

Universidad de las Regiones Autónoma de la Costa Caribe Nicaragüense

URACCAN

Proyecto Innovador para el Desarrollo con Identidad

DISEÑO DE PAVIMENTO RIGIDO DEL TRAMO SUBURBANO "EL RETEN –ENTRADA PRINCIPAL HOSPITAL REGIONAL BILWI"

Para Optar al Título de Ingeniero Civil.

Autores

Donald Rene Vega Saballo

Jorge Bernardo Gutiérrez Pasquier

Tutor

Ing. Guidian Vladimir Wilson Williams

Bilwi Puerto Cabezas 2020

Universidad de las Regiones Autónoma de la Costa Caribe Nicaragüense.

Proyecto Innovador para el Desarrollo con Identidad

DISEÑO DE PAVIMENTO RIGIDO DEL TRAMO SUBURBANO "EL RETEN –ENTRADA PRINCIPAL HOSPITAL REGIONAL BILWI"

Para Optar al Título de Ingeniero Civil.

Autores

Donald Rene Vega Saballo

Jorge Bernardo Gutiérrez Pasquier

Tutor

Ing. Guidian Vladimir Wilson Williams

Bilwi Puerto Cabezas 2020

Dedicamos este proyecto a Dios en primer lugar por ser el dador de la sabiduría para poder culminar este proceso de nuestra formación profesional a nuestros padres y hermanos por sus apoyos y motivación incondicional.

Este proyecto está dedicado con mucho esfuerzo y amor debido a que fue una gran lucha, muchos obstáculos y barreras que romper durante el proceso de este camino, la cual duro 9 meses en poder concluir, poner mucho empeño, dedicación y sobre todo perseverancia.

A la Universidad por permitir nuestros sueños de niñez, a nuestro tutor por su apoyo durante todo el proceso de elaboración y a todas esas personas que con un grano de arena aportaron información y tiempo, de igual manera sin ellos no hubiese sido posible la culminación de este proyecto.

AGRADECIMIENTO

Primero agradecemos todas esas personas como familiares, por guiarnos en el camino y fortalecernos, darnos ese apoyo incondicional para empezar un camino lleno de éxito para optar este título de INGENIERIA CIVIL. A nuestros docentes que de alguna manera nos dieron ánimos de salir adelante darnos fuerza y no rendirnos a mitad del camino.

Jorge Bernardo Gutiérrez Pasquier

Donald Rene Vega Saballo

AGRADECIMIENTO

Primeramente, agradezco a Dios por darme la oportunidad de seguir adelante con mis metas, por cada segundo, horas y días de lo que este proyecto se haya hecho posible.

A nuestro tutor Ing. Guidian Wilson por su apoyo, tiempo y confianza en nuestro trabajo, su capacidad para guiar nuestras ideas que han sido un aporte invaluable, no solamente en el desarrollo de este trabajo final, sino también en nuestra formación como Ingenieros.

También es importante mencionar a todos aquellos docentes que durante 5 largos años nos estuvieron formando, compartido cada experiencia y conocimiento que hoy en día nos ha servido.

Jorge Bernardo Gutiérrez Pasquier

AGRADECIMIENTO

Agradezco primeramente a Dios todo poderoso por darme cada minuto de vida, por darme la oportunidad de haber concluido con este proyecto y que todo haya sido posible.

A mi familia por el apoyo que me han brindado todo este tiempo, cada detalle, cada esfuerzo, no lo hubiera logrado sin ellos, a los docentes de la URACCAN que de igual manera fueron pate de muestra formación.

Al Ing. Guidian Wilson que fue una persona clave muy importante en este proceso al habernos guiado y cumplir con los requisitos de este proyecto.

Donald Rene Vega Saballo

Índice General

R	esumen	5
D	atos generales del proyecto	6
R	esumen Ejecutivo	7
	Estudio Geotécnico	7
	Estudio de Tráfico	7
	Diseño de la Estructura de Pavimento	8
I.	Descripción Contextual	9
II.	Justificación	12
Ш	. Objetivos	13
	General	13
	Especifico	13
I۷	/. Metodología	14
	4.1 Estudio Topográfico	14
	4.2 Estudio Geotécnico	15
	4.3 Estudio de Tránsito	16
	4.4 Estudio Hidrológico	18
۷.	. Estudio de mercado	20
	5.1 Descripción de los beneficiarios del proyecto	22
	5.2 Análisis de la demanda del proyecto	23
VI	I. Estudio Técnico del Proyecto	24
	6.1 Localización del proyecto	24
	6.1.1 Macro localización	24
	6.1.2 Micro localización	25
	6.2 Estudio topográfico	26
	6.3 Estudio de Transito	37
	6.4 Estudio geotécnico	59
	6.4.1 Resultado de del estudio geotécnico	62
	6.5 Estudio Hidrológico	63
	6.6 Criterios de diseño	65

6.6.1 Método de Diseño: AASTHO	66
6.6.2 DISEÑO GEOMÉTRICO DEL CAMINO	68
6.6.3 DEFINICION DE LOS CRITERIOS DE DISEÑO	68
6.6.4 VEHICULO DE DISEÑO	70
6.6.5 JUSTIFICACION DE LOS PARAMETROS DE DISEÑO	72
6.6.6 DRENAJE	76
6.7 Descripción General	81
6.8 PCA cálculo	89
DISEÑO PARA PAVIMENTO RÍGIDO METODOLOGÍA PCA-84	89
6.8.1 EJES SIMPLES:	90
6.8.2 EJES TÁNDEM:	90
6.9 PCA Cálculo	94
6.9.1 EJES SIMPLES:	95
6.9.2 TÁNDEM:	95
VII. Estudio de Aspecto Organizativo y Legales	98
7.1 Aspectos legales	98
7.2 Organización y estructura administrativa	99
7.3 Planificación y programación de la ejecución del proyecto	100
7.4 Identificación de Riesgos	100
7.5 Análisis de Riesgos	101
7.6 Evaluación de riesgos.	103
7.7 Administración	104
VIII.Estudio financiero y económico	106
8.1 PRESUPUESTO GENERAL RESUMEN POR ETAPAS	109
8.2 Presupuesto	110
8.3 CRONOGRAMA DE ACTIVIDAD	111
8.4 CRONOGRAMA FISICO	112
8.5 CRONOOGRAMA FINANCIERO	113
8.6 Cronograma dejecucion	114
IX. Estudio de impacto ambiental	116
X. Lista de referencias	
XI. ANEXO	120
Esta dal laboratorio de suela	120

Sondeo manual para pruebas de laboratorio	121
Fotos de Aforo Vehicular del tramo	123
Fotos del Estado de la calle actual	125
11.1 Matriz de actividad	127
11.2 AVAL DEL TUTOR	129
11.3 AVAL DE LA SINDICA	130
Indicé de Tabla	
Tabla 1: Tabla 1: Estudio de mercado	21
Tabla 2: Altura del Ojo del Conductor de un Automóvil y del Objeto visual	67
Tabla 3: Parámetros Básicos	73
Tabla 4: Dimensiones de los Vehículos de Diseño	75
Tabla 5: Control de Curvas Verticales	79
Tabla 6: Normas De Diseño	79
Tabla 7: Radios mínimos y grados máximos de curvas horizontales para distintas v diseño	
Tabla 8: Control de Diseño de Curvas verticales en Cresta Basado en las Distancias	
Tablas 9: Distancia de Visibilidad de Parada	86
Tabla 10: Pendiente de Bajada y Subida	87
Tabla 11: Decisión para Evitar Maniobras	87
Tabla 12: Resultados de Estudio de Medio Ambiente	118
lmagen	
Imagen N° 1: Macro localización	24
Imagen N° 2: Ubicación del proyecto	25
Imagen N° 3: Diseño Planímetro y Altimétrico del Proyecto	25
Figura	
Figura 1: Vehículo de diseño	71
Figura 2: vehículo de Diseño	71

Figura 3: Sección Típica de Diseño	80
Figura 4: Sección Típica,	80
Diagrama	
Estudio de Mercado	
Diagrama 1: Estudio de mercado	21
Diagrama 2: Estudio de mercado	21
Resultados del Aforo Vehicular Reten- Empalme del hospital (Mañana)	
Diagrama 3: Datos Para Histograma. TOTAL	45
Diagrama 4: V20 Calculo. Total	45
Diagrama 5: Grafico Para Histograma	45
Resultados del Aforo Vehicular empalme - entrada del hospital (tarde)	
Diagrama 6: Datos Para Histograma. TOTAL	49
Diagrama 7: V20 Calculo. Total	49
Diagrama 8: Datos Para Histograma. TOTAL	49
Resultados del Aforo Vehicular empalme - entrada del hospital (mañana)	
Diagrama 9: Datos Para Histograma	54
Diagrama 10: V20 Calculo	54
Diagrama 11: Datos Para Histograma	54
Resultados generales del Aforo Vehicular de los dos tramos de (mañana y tarde	e)
Diagrama 12: Datos Para Histograma Total	58
Diagrama 13: V20 Calculo Total	58
Diagrama 14: Grafico Para Histograma	58

Resumen

Este proyecto innovador consiste en el Diseño de Pavimento Rígido del Tramo Suburbano "El Reten – Entrada Principal Hospital Regional Bilwi". El proyecto del tramo se inicia en las afuera de la ciudad con una distancia de 2.3 kilómetro, se diseñó dos tramos con dos carriles similares, la parte urbana con 1,800 metros de longitud con 3.50 m de ancho y la parte Rural con 500 metros con 3.35 m de ancho (Entrada hacia el hospital).

Este proyecto contempla una solución técnica para la elaboración del diseño del proyecto se llevó a cabo la realización de estudios, primeramente, un estudio global de dicho tramo, en el cual se tomará en cuenta levantamientos topográficos, conteos vehiculares, sondeos de suelo para muestra de laboratorio y consecutivamente el diseño final

Por ello el diseño del tramo de carretera, garantizará el soporte de las demandas de tránsito, ambientales y proveerá una estructura durable que permita la circulación de los vehículos que transitan hacía en el tramo mencionado.

Por las razones antes mencionadas, es muy importante el estudio técnico y el diseño de esta vía, debido a que el tramo es una de las vías más transitadas por los pobladores, transporte de servicio selectivo (taxis), medios privados (camionetas y motos), transporte rural y colectivos (buses y camiones).

Datos generales del proyecto.

Nombre de proyecto

Diseño de Pavimento Rígido del Tramo Suburbano "El Retén - Entrada Principal Hospital Regional Bilwi".

Autores

Donald Rene Vega Saballo.

Jorge Bernardo Gutiérrez Pasquier.

Monto total del proyecto.

El monto sin impuesto es de C\$ 41,220,797.43

El monto con impuesto es de C\$ 64,800,412.63

Entidad encargada de la ejecución

La entidad ejecutora de este proyecto estará a cargo de la Alcaldía de Bilwi y el Gobierno Regional Autónomo Costa Caribe Norte (GRACCN) y el Ministerio de Transporte e Infraestructura (MTI)

Fecha de inicio y finalización del proyecto.

La duración de este proyecto será de 120 días (4 meses) aproximadamente.

Resumen Ejecutivo

El proyecto desarrollado consiste en el Diseño Pavimento Rígido del Tramo Suburbano "El Retén - La Entrada Principal Hospital Regional Bilwi". Con esta construcción se pretende darle salida a la problemática que se vienen presentando año con año, debido que el diseño contempla la construcción de 2.30 km de carretera de concreto hidráulico, con un ancho total de rodamiento de las vías de 7.0 m. para un ancho de 3.5 m. por carril. La sección típica está conformada por dos vías de dos carriles de 3.5 metros de ancho, con hombros, pendiente transversal del 3% para lograr una mejor, rápida evacuación de las aguas superficiales y cunetas urbana.

Se efectuó un levantamiento con topográfico con estación total sobre la línea de la carretera en él se detallan las variaciones de cotas del terreno, lo que permitió definir la configuración del diseño.

Para la construcción del proyecto se realizan distintas actividades tales como: Estudio Topográfico, Estudio de Tráfico, Estudio Geotécnico, Estudio Hidrológico, Diseño de la Estructura de Pavimento, el costo, presupuesto de las etapas y sub etapas. El proyecto tiene como costo total de **C**\$ 41,220,797.43 sin impuestos.

Estudio Geotécnico: Este estudio se desarrolló con la finalidad de establecer las características Físico Mecánicas de los suelos del Tramo Reten al Nuevo Hospital Regional.

En base a lo descrito anteriormente, en el tramo Diseñado los suelos predominantes Según la Clasificación AASHTO que son **A**-7-6 y A-5 son suelos semi-impermeables y según las especificaciones Técnicas (NIC- 2019) estos tipos de materiales no son de buena calidad.

Estudio de Tráfico: Es uno de los factores más importantes para el dimensionamiento de pavimentos, en el que se considera las cargas más pesadas por eje esperadas en el carril de diseño en estudio, lo que determinará la estructura de pavimento de la carretera durante el período de diseño.

Luego de haber realizado los debidos análisis en el presente documento se utilizó una tasa de crecimiento del 2.5%, el cual se considera como tasa de crecimiento estable y conservadora, por medio de este valor se procedió con el cálculo del tránsito de diseño, partiendo de un tráfico de **15,361 vehículos.**

Vehículos obtenidos por medio de conteos vehiculares los que fueron proyectados a un periodo de 20 años obteniendo un resultado de **230,415 Vehículos**.

Diseño de la Estructura de Pavimento: Luego de obtener las características y propiedades Físicas y Mecánicas de los Materiales (Sub-Rasante y Bancos) existente en todo el Proyecto y del Estudio de Tránsito Vehicular calculado se procede a efectuar el Diseño de Pavimento usando el programa PCA el cual sigue la metodología propuesta por la guía AASHTO-93

La finalidad de la construcción de estructura de pavimento es que cumpla con las características necesarias para soportar las cargas durante su período de diseño, así como también resistir el desgaste superficial, razón por lo cual el peso o dimensionamiento es un tema puntual en el diseño.

I. Descripción Contextual.

El proyecto se ubica en la Región Autónoma del Atlántico Norte (GRACCN),

específicamente en el municipio de Puerto Cabezas, cuya cabecera municipal es la

Ciudad de Bilwi. Cuenta con una con una extensión territorial de 5,984.81 km². El

municipio se localiza entre las coordenadas 14° 01' latitud norte y 83° 23' longitud

Oeste

La cabecera municipal está ubicada a 526 km de Managua capital de la Republica

de Nicaragua el cual limita con los siguientes municipios:

Al Norte: Municipio de Waspam

Al Sur:

Municipio de Prinzapolka

Al este: Mar Caribe

Al oeste: Municipio de Rosita y Waspam

El origen del proyecto se localiza sobre el territorio de la comunidad de Kamla, la

carretera de la estación 0+000 que inicia del El Reten toma rumbo norte sobre el

camino de acceso hacia la capital, la ruta se aloja sobre el camino existente hasta

la altura de la estación 2+300. A partir de este punto el trazado continúa siempre

con orientación sur sobre terrenos hasta interceptar con el camino hacia la entrada

al hospital, este sitio de cruce se localiza a 0.5 km hasta llegar al hospital.

El municipio de Puerto Cabezas tiene como principal actividad económica la pesca

de mariscos (camarón, variedad de pescados, caracoles, langosta, etc.) y tortuga

de mar. También tiene actividad forestal y comercio.

El Municipio cuenta con extensas zonas dedicadas al cultivo de pinos y bosques

latifolia dos que podrían generar ingresos a la población, sin embargo, estas

riquezas son explotadas por las empresas madereras y contratistas particulares, sin

acompañamiento de programas de reforestación en las zonas afectadas. Por otro

lado, los pobladores también extraen leña y madera, sin que exista un adecuado

control sobre el acceso al recurso.

9

La extracción de madera es otra de las actividades fundamentales en el Municipio, aunque el porcentaje de las utilidades que queda en el nivel local es mínimo.

En cuanto a la actividad pecuaria, esta es escasa en el sector llano y en los litorales si existe, pero en pequeñas proporciones.

Dadas las características biofísicas del Municipio, el sector pesquero ocupa un lugar privilegiado. Existe un gran número de industrias que se dedican a la pesca, procesamiento y comercialización de los recursos faunísticos marinos. En el municipio existen 5 empresas pesqueras, 26 barcos langosteros, 4 camaroneros y 30 centros de acopio. Entre las empresas más importantes figuran: NAFCOSA, COPECHARLE, PROMARNIC, FLOTANOR, MAR AZUL.

En el ámbito social Puerto Cabezas está estructurada en 26 barrios y 7 asentamientos progresivos en el casco urbano con 99 comunidades en el área rural, distribuidas en 4 sectores de la siguiente forma. Municipio de Waspam con 16 comunidades, Municipio de Rosita con 25 comunidades, Municipio de Prinzapolka con 17 y litoral norte con 13 comunidades.

En los dos últimos años el municipio de Puerto Cabezas se está realizando la planificación para el desarrollo del municipio con la participación activa de distintos sectores de los pueblos indígenas y comunidades, étnicas del municipio de Puerto Cabezas instituciones estatales y no estatales, sindicatos y la sociedad civil organizada y no organizada.

Según Índice de Desarrollo Humano (IDH), el desarrollo humano es el nivel en que las personas tienen satisfecha sus necesidades básicas, con la cual mejoran sus condiciones de vida. Entre estas necesidades se puede mencionar la educación, salud, abastecimiento de agua, fuentes de ingresos, ambiente sano y otras necesidades que requiere la familia. A continuación, se presentan los niveles para las condiciones de vida (ICV), en la cual fue evaluada la población de la RACCN.

Por el lado ambiental, el incremento rápido de la población en Bilwi, del sector comercio (mercados, pulperías, restaurantes, bares, discotecas etc.) y del sector

empresarial ha contribuido a la generación e incremento de disposiciones incontroladas de una cantidad considerable de residuos sólidos.

El botadero de todos estos desechos se encuentra a tan solo 8 km de la ciudad lo que provoca un incremento de riesgo de brotes epidémicos por enfermedades de origen vectorial, de igual manera a la contaminación de aguas superficiales, subterráneas con riesgo de enfermedades de origen hídrico y dérmico (Informe del Módulo de Recursos Naturales y Medio Ambiente de la Alcaldía de Puerto Cabezas, 2015).

II. Justificación

El propósito de la propuesta del proyecto es brindar solución al problema del tráfico vehicular de la ciudad, así como mejorar la conectividad y la seguridad vial. Para lograr estos objetivos se plantea el diseño de pavimento de concreto rígido del tramo de carretera El Reten - Entrada Principal Nuevo Hospital Regional.

La realización del presente proyecto es de suma importancia porque vendrá a dar solución a los problemas con los baches que se genera constantemente en épocas de invierno provocando daño de los vehículos y aumentando el costo por transporte. Con la construcción de este tramo se mejorará la condición de paso vehicular dando respuesta a las necesidades de la población, además facilita el acceso a los servicios públicos por lo que transporte público, privados que accederán con mayor fluidez hacia la ciudad y así mismo será de gran beneficio para acceder al hospital regional que actualmente está en construcción.

Con el diseño, estudio técnico y ejecución de la estructura de rodamiento, más las obras de drenaje superficial que se estime conveniente realizar en esta vía "El Reten - Entrada Principal Nuevo Hospital Regional" del municipio de Puerto Cabezas, se pretende en lo general brindar una mejor calidad de vida para los habitantes de la ciudad.

Esta propuesta de proyecto es de mucha importancia para toda la población Regional, ya que a través de dicho proyecto se mejorará los problemas del mal estado del camino la cual causa grandes problemas a la población, debida a qué futuro se podrá trasladar de manera segura para recibir atención médica de emergencia al hospital, siendo los más afectados niños, ancianos y mujeres.

De esta manera se pretende contar con un diseño técnico y adecuado a los requerimientos del tramo referido anteriormente, posibilitaría, a las instituciones responsables, mejorar hacia el futuro el acceso a la entrada del hospital lo que redundará en ahorro de tiempo, costo de transporte y su mantenimiento.

III. Objetivos

General

Elaborar una propuesta de diseño de pavimento rígido del tramo El Reten - Entrada Principal Nuevo Hospital Regional.

Especifico

- Realizar los estudios técnicos de ingeniería (Estudio Topográfico,
 Transito, Geotécnico e Hidrológico) para obtener un diseño adecuado.
- > Diseñar la estructura de pavimento rígido.
- Determinar el costo, presupuesto de las etapas y sub etapas del proyecto tramo El Reten - Entrada Principal Nuevo Hospital Regional.

IV. Metodología

4.1 Estudio Topográfico

Se realizó un levantamiento topográfico del tramo de carretera Reten – hospital regional para conocer la planimetría y altimetría de la vía, esto se realizará en un lapso de un día se levantará todos los datos necesarios.

El levantamiento de la línea base, se realizó el levantamiento del eje central de la vía, tomando en consideración las normas geométricas que se establecieron previamente, principalmente, las normas referidas a la definición de la planimetría de la vía.

Esto se realizó a lo ancho y largo de toda la calle definida para el proyecto, se levantó del retén hasta llegar a la construcción de hospital regional. Se obtuvo todo el detalle como sistemas de drenajes naturales denominados zanjas, con el fin de obtener una mejor definición de la calle disponible para el diseño vial.

Específicamente en el diseño vías de carreteras, el topógrafo proporcionó para dicho estudio toda la información topográfica y el levantamiento, el estudio topográfico brindo los siguientes datos para la formulación del proyecto:

- 1.- En primer lugar, se definió la forma dimensional del terreno, lo cual se logró levantando una poligonal abierta a lo largo del eje central de la carretera.
- 2.- Se describió el relieve del terreno, para su configuración se efectuó una nivelación, generalmente en los puntos más relevantes y a ambos lados del eje central.
- 3.- Se brindó la localización topográfica o detalles de interés tales como: tendido eléctrico, tendido telefónico, drenaje de aguas servidas y pluviales, red de agua potable, pozos de visita o manjoles y tragantes de aguas pluviales existentes, localización de derecho de vía, mojones (BM), arboles de gran tamaño, arroyos o cauces, vías de acceso, construcciones existentes.

4- Se presentó los datos topográficos en un plano denominado de conjunto y dibujado a la escala solicitada.

4.2 Estudio Geotécnico

Todas las muestras alteradas obtenidas de los sondeos manuales además de la caracterización visual y manual, se clasificaron, rotularon y trasladaron al laboratorio para su posterior evaluación, ensayo de acuerdo a los procedimientos y normas establecidas.

Se recopilaron los estudios de suelo mediante la realización de visita de campo al sitio de los cuales se obtuvo.

- 1- Sondeos manuales sobre la línea, de estos sondeos se efectuaron:
- Análisis Granulométrico. ASTM-D422 o AASHTO T-88
- Limite Líquido. ASTM-D423 o AASHTO T-89

El trabajo de campo consistió en tomas de muestras de sondeos manuales (09 Estaciones) distribuidos cada 250 m de la cual se obtuvo muestras alteradas las cuales fueron sometidas a los respectivos ensayos de laboratorio anteriormente mencionado. La profundidad de cada sondeo fue de 1 metros, tomando muestra del suelo a cada 0.30 m, suficiente para obtener muestras de los componentes y estratigrafía del camino. (GUÍA PARA MUESTREO DE SUELOS En el marco del Decreto Supremo N° 002-2013-MINAM, Estándares de Calidad Ambiental (ECA) para Suelo).

- 2- Sondeos de los Bancos de Materiales por medio de pozos a cielo abierto, de estos sondeos se obtuvo sus localizaciones y ubicaciones, así como:
- Análisis Granulométrico. ASTM-D422 o ASHTO T-88
- CBR ASTM-D1883 o ASHTO T-193.

Con el objetivo de hacer una caracterización completa de los componentes estructurales de las capas de la vía y evaluar su calidad como material selecto, se procedió a realizar muestras para CBR de la siguiente manera: en total se

prepararon 3 grupos de muestras para ser ejecutados los ensayes de CBR, se compacto las muestras con la energía aplicada para las capas superficiales de acuerdo a la norma ASHTO T-180. De esa manera se determinó si el Banco esta adecuado para componer la base y sub base de la estructura de la vía.

4.3 Estudio de Tránsito

El estudio de tráfico se realizó basándose en la definición de los diferentes tipos de tráfico que conformarán el futuro volumen de tráfico que hará uso de la vía hasta su horizonte de diseño.

Para conocer los volúmenes de tráfico que circularon sobre la ruta se realizó dos clases de trabajo de campo que consisten en conteos volumétrico y encuestas Origen – Destino.

Se realizó mediciones de flujos vehiculares y recopilados los datos del estudio de tránsito tales como conteos vehiculares, se procedió de la siguiente manera:

- Se estableció un periodo de diseño dependiendo del grado de importancia de la vía.
- Mediante los registros del tráfico vehicular se obtuvo la tasa de crecimiento, (Los volúmenes de tránsito futuro para efectos de proyecto se derivan a partir del tránsito actual del incremento del tránsito esperado al final del año del período de diseño.
- Se determinó los coeficientes de drenaje para la estructura, (conforme lo que indica el método de NIC 2000).
- Se procedió a obtener los Números Estructurales por capas de la Estructura mediante cuadros de resultados establecidos.
- Se procedió a calcular los espesores para cada capa que conforma la estructura de pavimento rígido, (para el cálculo de los espesores por capa, se tomo en

cuenta la carga máxima de diseño, flujo vehicular, el tipo de tránsito, precipitación anual).

Para el cálculo de la Tasa de Crecimiento Anual se aplicó la siguiente fórmula:

$$F_c = 1 - {}^{m}\sqrt{V_n/V_1}$$

 F_c = Tasa de Crecimiento Anual.

 V_1 = Valor del Año Base a partir del cual se han colectado los datos.

V_n = Valor en el año n del dato colectado.

 Se calculó el tránsito de diseño a partir de conteos de tránsito (TPD) y factor de crecimiento vehicular, (Para el diseño estructural se determinó un flujo de tránsito de 1.5 veces el tránsito actual, esto se debe a consideraciones de diseño tomadas del método que se utilizará).

Formula:

$$TPD = 1.5 (100)$$

- Se estableció serviciabilidad inicial y final ya que se calcula la perdida de serviciabilidad del tramo de estudio.
- Se obtuvo los factores de carga de ejes equivalentes haciendo uso de las tablas de la AASHTO a partir de un Numero Estructural asumido, las cargas por ejes y serviciabilidad final del proyecto.
- Se calculó las cargas de eje equivalente (W18 o ESAL) por medio del tránsito de diseño y factores de cargas de ejes equivalentes. Los vehículos de diseño son los vehículos predominantes y de mayores exigencias en el tránsito que se desplaza por la carretera. De acuerdo al estudio de transito que se llevó a cabo para el tramo de carretera, sabremos cual es el vehículo de diseño para dicho tramo de carretera.

4.4 Estudio Hidrológico

El estudio hidrológico se llevó a cabo mediante el método racional, para esto se tomó en cuenta los siguientes parámetros:

- 1. Determinación del caudal Q sobre la superficie transversal y longitudinal.
- 2. Duración de la lluvia, (tiempo que tarda en precipitarse de la superficie).
- 3. Intensidad.
- 4. Frecuencia.
- 5. Coeficiente de escorrentía.
- 6. Tiempo de concentración.
- 7. Intensidad de diseño.
- 8. Periodo de diseño.
- 9. Tomando en cuenta todos los parámetros de diseño antes mencionados se procederá al cálculo y resultados finales.

Formula a utilizar:

Siendo **A** la superficie total de la cuneta, estabilizándose el caudal a partir de entonces. La intensidad de lluvia neta **E** será igual a la de la lluvia total I si el terreno impermeable. Sin embargo, en los casos reales:

$$(E/I = C) < 1$$

Siendo C el coeficiente de escorrentía.

El caudal máximo se dará en el equilibrio y su valor será:

$$Q = E \cdot A = C \cdot I \cdot A / K$$
 Siendo:

C: Coeficiente medio de escorrentía de la superficie drenada.

A: Área de la superficie drenada, salvo que ésta presente aportaciones o pérdidas importantes, tales como resurgencias o sumideros, en cuyo caso el cálculo del caudal Q deberá justificarse convenientemente.

I: Intensidad media de precipitación correspondiente al período de retorno considerado y a un intervalo igual al tiempo de concentración.

K: Coeficiente cuyo valor depende de las unidades en las que se midan Q, I y A. Habitualmente: Q (m³/sg); I (mm/h); A (Km²)

Por lo que, en este caso, K = 3.6 Quedando la formula Q= C*I*A/3.6

V. Estudio de mercado

El estudio de mercado es la clave principal para toda inversión de general ingresos y ganancias. La medida de la demanda para un producto o servicios será la cantidad de personas que lo compran o hacen uso del mismo. Ningún proyecto destinado a la generación de ingreso puede sostenerse a si mimo si no consigue responder a la demanda del mercado

Las tareas necesarias para evaluar la demanda del mercado varían, dependiendo del tipode producto o servicio analizados. Se pueden identificar cuatro categorías generales debienes y servicios, cada una presenta sus propias características y re quiere un enfoquedistinto para evaluar la demanda. Estas categorías son:

- a) Producto básico
- b) Producto básico perecible
- c) Productos innovadores o especiados
- d) Servicios

Este proyecto se realiza basado en la importancia que implica la necesidad a futuro lo cual será la vía principal para toda la población que quiera acudir a nuevo hospital regional.

Los resultados obtenidos de la entrevista que se realizó en cada vivienda que viven cerca del tramo de carretera hay un total de 100 personas siendo niños, jóvenes, adultos, los cuales son de sexo masculino y femenino.

20

ESTUDIO DE MERCADO									
N°	Sexo	Cantidad	Porcentaje						
1	Masculino	35	35%						
2	Femenino	65	65%						
TOTAL 100 100%									
Fuente: elaboración propio									

Tabla 1: Estudio de mercado

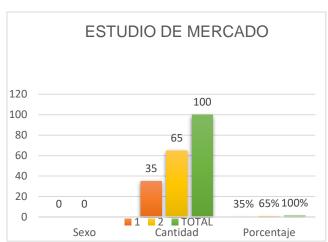


Grafico 1: Estudio de mercado. Grafico 2: Estudio de mercado.

5.1 Descripción de los beneficiarios del proyecto

Beneficiarios del proyecto comprende a todos los pobladores de la localidad de Bilwi y sus comunidades, la ejecución del presente proyecto busca conectar la zona urbana actual con la zona de expansión urbana y comunidades.

Directos

Los beneficiarios directos del proyecto será toda la población de la ciudad de Puerto cabezas, la comunidad cercana y aledaña de la región.

Indirectos

- Usuarios de vehículos privados.
- > Transporte público.
- > Trasporte comercial.
- Pobladores del sector del retén.

5.2 Análisis de la demanda del proyecto

Demanda

El análisis de las encuestan nos permite identificar que el mercado potencial es toda la población de la región es ya que la vía actual se encuentra en mal estado, pues el tramo no cumple con las condiciones adecuadas de una carretera.

Oferta

De acuerdo a la encuesta realizada se establece que la mejor solución al problema es llevar a cabo la ejecución de la presente propuesta de proyecto el cual consiste en el diseño de pavimento ya que esta vía en tiempos de lluvia se encuentra en malas condiciones.

VI. Estudio Técnico del Proyecto

6.1 Localización del proyecto

6.1.1 Macro localización

El proyecto se localiza en puerto cabeza (Bilwi) es un municipio de la región autónoma de la Costa Caribe Norte (RACCN) de Nicaragua, es Capital de la Región de la Costa Caribe Norte, se encuentra ubicado en la franja costera del caribe nicaragüense entre las coordenadas 14 grados 03 latitud norte y los 83 grados 22, longitud oeste con una distancia de 560 km de la ciudad de Managua, capital del país. En esta ciudad se encuentra la seda del gobierno Regional (GRACCN) además Bilwi tiene un clima tropical húmedo. Aunque con variaciones, la temperatura promedio es de 26.3 °C.

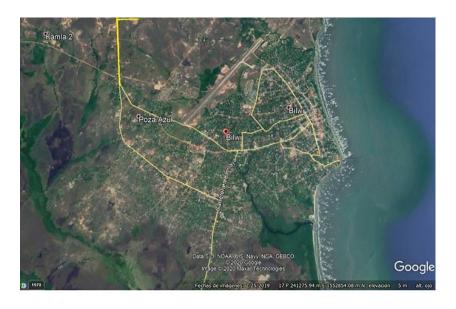
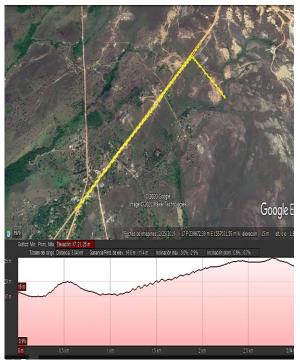


Imagen No1: Macro localización

Fuente: Google Earth Pro

6.1.2 Micro localización


Área donde se ejecutará el proyecto la cual se encuentra en la comunidad de Kamla, en el municipio de puerto cabeza, región Autónoma de la costa caribe (RACCN), aproximadamente a una distancia a una distancia de 2.30 km al norte de la cabecera municipal de Bilwi, que se comunica a través de una vía de acceso.

Geográficamente se ubica en las coordenadas 14° 03' 24" latitud norte y 83° 22' 24" longitud oeste.

Imagen N° 2: Ubicación del proyecto.

Imagen N° 3: Diseño Planímetro y Altimétrico del Proyecto.

6.2 Estudio topográfico

Primeramente, se realizó el levantamiento topográfico el dia lunes 01 de junio del tramo de carretera Reten – hospital regional para conocer la planimetría y altimetría de la vía, esto se realizo en un lapso de un día se levantó todos los datos necesarios.

El levantamiento de la línea base, se realizó el levantamiento del eje central de la vía, tomando en consideración las normas geométricas que se establecieron previamente, principalmente, las normas referidas a la definición de la planimetría de la vía.

Esto se realizó a lo ancho y largo de toda la calle definida para el proyecto, se levantó del retén hasta llegar a la construcción de hospital regional. Se obtuvo todo el detalle como sistemas de drenajes naturales denominados zanjas, con el fin de obtener una mejor definición de la calle disponible para el diseño vial.

RESULTADOS DE LEVANTAMIENTO

Num.	Norte	Este	Elevacion	Longitud	Num.	Norte	Este	Elevacion	Longitud
1	240770	1555768	18	20 m	386	241537	1556553	21	20 m
2	240769	1555769	18	20 m	387	241537	1556552	21	20 m
3	240767	1555771	18	20 m	388	241538	1556551	21	20 m
4	240764	1555774	18	20 m	389	241543	1556547	21	20 m
5	240761	1555777	18	20 m	390	241548	1556543	21	20 m
6	240760	1555779	18	20 m	391	241549	1556542	21	20 m
7	240759	1555780	18	20 m	392	241550	1556541	21	20 m
8	240774	1555793	17	20 m	393	241564	1556555	21	20 m
9	240774	1555792	17	20 m	394	241563	1556556	21	20 m
10	240775	1555791	17	20 m	395	241562	1556557	21	20 m
11	240779	1555787	17	20 m	396	241557	1556561	21	20 m
12	240783	1555783	17	20 m	397	241552	1556566	21	20 m
13	240784	1555782	17	20 m	398	241552	1556566	21	20 m
14	240785	1555780	17	20 m	399	241551	1556567	21	20 m
15	240801	1555793	17	20 m	400	241565	1556582	22	20 m
16	240799	1555794	17	20 m	401	241566	1556582	22	20 m
17	240799	1555795	17	20 m	402	241566	1556581	22	20 m
18	240793	1555801	17	20 m	403	241571	1556576	21	20 m
19	240790	1555805	17	20 m	404	241576	1556572	21	20 m
20	240789	1555806	17	20 m	405	241577	1556571	21	20 m
21	240787	1555808	17	20 m	406	241578	1556570	21	20 m
22	240802	1555821	17	20 m	407	241592	1556584	21	20 m
23	240803	1555820	17	20 m	408	241591	1556585	21	20 m
24	240804	1555819	17	20 m	409	241590	1556585	21	20 m
25	240807	1555815	17	20 m	410	241586	1556589	21	20 m
26	240811	1555812	17	20 m	411	241580	1556595	22	20 m
27	240812	1555811	17	20 m	412	241579	1556596	22	20 m
28	240813	1555810	17	20 m	413	241578	1556597	22	20 m
29	240828	1555823	17	20 m	414	241593	1556611	22	20 m
30	240827	1555824	17	20 m	415	241594	1556610	22	20 m
31	240826	1555825	17	20 m	416	241595	1556609	22	20 m
32	240823	1555829	17	20 m	417	241600	1556603	22	20 m
33	240819	1555832	17	20 m	418	241606	1556599	21	20 m
34	240819	1555833	17	20 m	419	241606	1556598	21	20 m
35	240818	1555834	17	20 m	420	241607	1556597	21	20 m
36	240830	1555848	17	20 m	421	241622	1556610	21	20 m
37	240831	1555847	17	20 m	422	241621	1556611	21	20 m
38	240832	1555846	17	20 m	423	241621	1556612	21	20 m
39	240835	1555843	17	20 m	424	241615	1556617	22	20 m

40	240839	1555840	17	20 m	425	241611	1556622	22	20 m
41	240840	1555840	17	20 m	426	241610	1556622	22	20 m
42	240841	1555839	17	20 m	427	241609	1556623	22	20 m
43	240855	1555852	17	20 m	428	241622	1556638	22	20 m
44	240854	1555853	17	20 m	429	241623	1556637	22	20 m
45	240854	1555854	17	20 m	430	241624	1556637	22	20 m
46	240850	1555858	17	20 m	431	241629	1556632	22	20 m
47	240845	1555863	17	20 m	432	241635	1556627	21	20 m
48	240844	1555863	17	20 m	433	241635	1556626	21	20 m
49	240843	1555864	17	20 m	434	241636	1556625	21	20 m
50	240857	1555878	17	20 m	435	241651	1556640	22	20 m
51	240858	1555878	17	20 m	436	241650	1556640	22	20 m
52	240859	1555877	17	20 m	437	241649	1556641	22	20 m
53	240864	1555872	17	20 m	438	241643	1556646	22	20 m
54	240867	1555868	17	20 m	439	241638	1556651	22	20 m
55	240868	1555867	17	20 m	440	241637	1556652	22	20 m
56	240869	1555866	17	20 m	441	241636	1556652	22	20 m
57	240883	1555881	17	20 m	442	241650	1556666	22	20 m
58	240882	1555881	17	20 m	443	241651	1556665	22	20 m
59	240881	1555882	17	20 m	444	241652	1556664	22	20 m
60	240877	1555886	17	20 m	445	241657	1556660	22	20 m
61	240873	1555891	17	20 m	446	241663	1556654	22	20 m
62	240872	1555892	17	20 m	447	241664	1556653	22	20 m
63	240871	1555893	17	20 m	448	241665	1556652	22	20 m
64	240885	1555908	17	20 m	449	241680	1556667	22	20 m
65	240886	1555907	17	20 m	450	241679	1556668	22	20 m
66	240887	1555906	17	20 m	451	241678	1556669	22	20 m
67	240891	1555901	17	20 m	452	241672	1556674	22	20 m
68	240895	1555897	17	20 m	453	241666	1556679	22	20 m
69	240896	1555896	17	20 m	454	241665	1556679	22	20 m
70	240897	1555895	17	20 m	455	241665	1556680	22	20 m
71	240910	1555911	17	20 m	456	241679	1556694	22	20 m
72	240909	1555911	17	20 m	457	241680	1556693	22	20 m
73	240908	1555912	17	20 m	458	241681	1556693	22	20 m
74	240905	1555916	17	20 m	459	241686	1556688	22	20 m
75	240901	1555921	17	20 m	460	241692	1556683	22	20 m
76	240900	1555921	17	20 m	461	241693	1556682	22	20 m
77	240899	1555922	17	20 m	462	241693	1556682	23	20 m
78	240913	1555936	17	20 m	463	241708	1556695	23	20 m
79	240914	1555935	17	20 m	464	241707	1556696	23	20 m
80	240915	1555934	17	20 m	465	241706	1556696	23	20 m

81	240919	1555929	17	20 m	466	241701	1556702	23	20 m
82	240922	1555926	17	20 m	467	241695	1556706	23	20 m
83	240923	1555925	17	20 m	468	241694	1556707	23	20 m
84	240924	1555924	17	20 m	469	241693	1556708	23	20 m
85	240939	1555939	18	20 m	470	241708	1556722	23	20 m
86	240938	1555939	18	20 m	471	241708	1556722	23	20 m
87	240937	1555940	18	20 m	472	241709	1556721	23	20 m
88	240933	1555945	18	20 m	473	241716	1556715	23	20 m
89	240929	1555948	17	20 m	474	241721	1556710	23	20 m
90	240928	1555949	17	20 m	475	241722	1556709	23	20 m
91	240928	1555950	17	20 m	476	241723	1556709	23	20 m
92	240942	1555964	18	20 m	477	241737	1556722	23	20 m
93	240943	1555963	18	20 m	478	241736	1556723	23	20 m
94	240944	1555962	18	20 m	479	241736	1556723	23	20 m
95	240947	1555959	18	20 m	480	241729	1556729	23	20 m
96	240951	1555955	18	20 m	481	241723	1556735	23	20 m
97	240952	1555954	18	20 m	482	241722	1556736	23	20 m
98	240952	1555953	18	20 m	483	241720	1556737	23	20 m
99	240968	1555966	19	20 m	484	241734	1556752	23	20 m
100	240967	1555967	19	20 m	485	241736	1556751	23	20 m
101	240966	1555968	19	20 m	486	241737	1556750	23	20 m
102	240963	1555972	19	20 m	487	241744	1556743	23	20 m
103	240961	1555975	19	20 m	488	241750	1556737	23	20 m
104	240960	1555976	19	20 m	489	241752	1556737	23	20 m
105	240960	1555976	19	20 m	490	241751	1556736	23	20 m
106	240975	1555989	19	20 m	491	241752	1556735	23	20 m
107	240975	1555988	19	20 m	492	241767	1556749	23	20 m
108	240976	1555987	19	20 m	493	241766	1556750	23	20 m
109	240978	1555984	19	20 m	494	241765	1556751	23	20 m
110	240982	1555980	19	20 m	495	241758	1556757	23	20 m
111	240983	1555979	19	20 m	496	241751	1556764	23	20 m
112	240983	1555978	19	20 m	497	241749	1556765	23	20 m
113	240999	1555992	20	20 m	498	241748	1556766	23	20 m
114	240998	1555993	20	20 m	499	241763	1556781	23	20 m
115	240997	1555993	20	20 m	500	241764	1556780	23	20 m
116	240993	1555998	20	20 m	501	241765	1556778	23	20 m
117	240989	1556002	20	20 m	502	241772	1556771	23	20 m
118	240989	1556003	20	20 m	503	241780	1556764	23	20 m
119	240988	1556003	20	20 m	504	241781	1556763	23	20 m
120	241002	1556017	20	20 m	505	241782	1556762	23	20 m
121	241003	1556016	20	20 m	506	241796	1556776	24	20 m

122	241003	1556015	20	20 m	507	241795	1556777	24	20 m
123	241007	1556012	20	20 m	508	241794	1556778	24	20 m
124	241011	1556007	20	20 m	509	241787	1556784	24	20 m
125	241012	1556007	20	20 m	510	241778	1556792	23	20 m
126	241013	1556006	20	20 m	511	241777	1556793	23	20 m
127	241027	1556021	20	20 m	512	241776	1556794	23	20 m
128	241026	1556022	20	20 m	513	241791	1556809	24	20 m
129	241025	1556022	20	20 m	514	241792	1556808	24	20 m
130	241022	1556026	20	20 m	515	241793	1556807	24	20 m
131	241017	1556030	20	20 m	516	241800	1556800	24	20 m
132	241016	1556031	20	20 m	517	241808	1556793	24	20 m
133	241015	1556032	20	20 m	518	241809	1556792	24	20 m
134	241029	1556046	20	20 m	519	241810	1556791	24	20 m
135	241029	1556046	20	20 m	520	241823	1556804	24	20 m
136	241030	1556045	20	20 m	521	241822	1556805	24	20 m
137	241034	1556041	20	20 m	522	241821	1556806	24	20 m
138	241039	1556037	20	20 m	523	241814	1556814	24	20 m
139	241040	1556036	20	20 m	524	241806	1556820	24	20 m
140	241041	1556036	20	20 m	525	241805	1556821	24	20 m
141	241054	1556049	19	20 m	526	241804	1556822	24	20 m
142	241054	1556050	19	20 m	527	241813	1556832	24	20 m
143	241053	1556051	19	20 m	528	241814	1556831	24	20 m
144	241048	1556055	19	20 m	529	241815	1556830	24	20 m
145	241042	1556060	19	20 m	530	241827	1556825	24	20 m
146	241042	1556060	19	20 m	531	241829	1556817	24	20 m
147	241041	1556061	19	20 m	532	241829	1556816	24	20 m
148	241055	1556077	19	20 m	533	241831	1556814	24	20 m
149	241056	1556076	19	20 m	534	241836	1556810	24	20 m
150	241057	1556075	19	20 m	535	241837	1556811	24	20 m
151	241062	1556070	19	20 m	536	241837	1556811	24	20 m
152	241066	1556067	19	20 m	537	241839	1556813	24	20 m
153	241067	1556066	19	20 m	538	241840	1556815	24	20 m
154	241067	1556066	19	20 m	539	241841	1556816	24	20 m
155	241081	1556080	19	20 m	540	241842	1556817	24	20 m
156	241080	1556081	19	20 m	541	241857	1556803	24	20 m
157	241080	1556081	19	20 m	542	241856	1556802	24	20 m
158	241075	1556085	19	20 m	543	241856	1556802	24	20 m
159	241070	1556090	19	20 m	544	241854	1556800	24	20 m
160	241069	1556090	19	20 m	545	241852	1556798	24	20 m
161	241069	1556091	19	20 m	546	241852	1556797	24	20 m
162	241084	1556106	18	20 m	547	241851	1556797	24	20 m

163	241084	1556106	18	20 m	548	241867	1556783	24	20 m
164	241085	1556105	18	20 m	549	241867	1556783	24	20 m
165	241089	1556101	18	20 m	550	241868	1556784	24	20 m
166	241093	1556097	18	20 m	551	241869	1556786	24	20 m
167	241094	1556096	18	20 m	552	241871	1556788	24	20 m
168	241094	1556096	18	20 m	553	241871	1556788	24	20 m
169	241108	1556110	18	20 m	554	241871	1556789	24	20 m
170	241107	1556111	18	20 m	555	241886	1556775	24	20 m
171	241106	1556111	18	20 m	556	241885	1556774	24	20 m
172	241102	1556115	18	20 m	557	241885	1556774	24	20 m
173	241098	1556118	18	20 m	558	241883	1556772	24	20 m
174	241098	1556119	18	20 m	559	241881	1556770	24	20 m
175	241097	1556120	18	20 m	560	241881	1556770	24	20 m
176	241111	1556135	18	20 m	561	241881	1556769	24	20 m
177	241111	1556134	18	20 m	562	241894	1556754	24	20 m
178	241112	1556133	18	20 m	563	241895	1556755	24	20 m
179	241117	1556129	18	20 m	564	241895	1556755	24	20 m
180	241121	1556124	18	20 m	565	241897	1556758	24	20 m
181	241122	1556124	18	20 m	566	241899	1556760	24	20 m
182	241123	1556123	18	20 m	567	241899	1556760	24	20 m
183	241138	1556136	18	20 m	568	241900	1556761	24	20 m
184	241137	1556137	18	20 m	569	241913	1556746	24	20 m
185	241136	1556138	18	20 m	570	241913	1556745	24	20 m
186	241131	1556142	18	20 m	571	241912	1556745	24	20 m
187	241127	1556146	18	20 m	572	241910	1556743	24	20 m
188	241126	1556147	18	20 m	573	241908	1556741	24	20 m
189	241125	1556148	18	20 m	574	241908	1556740	24	20 m
190	241140	1556162	18	20 m	575	241907	1556740	24	20 m
191	241141	1556161	18	20 m	576	241922	1556726	24	20 m
192	241142	1556160	18	20 m	577	241922	1556726	24	20 m
193	241146	1556156	17	20 m	578	241922	1556727	24	20 m
194	241151	1556152	17	20 m	579	241924	1556728	24	20 m
195	241151	1556151	17	20 m	580	241925	1556730	24	20 m
196	241152	1556150	17	20 m	581	241926	1556731	24	20 m
197	241167	1556164	17	20 m	582	241926	1556731	24	20 m
198	241166	1556165	17	20 m	583	241940	1556716	24	20 m
199	241165	1556166	17	20 m	584	241939	1556715	24	20 m
200	241161	1556170	17	20 m	585	241939	1556715	24	20 m
201	241157	1556174	17	20 m	586	241937	1556713	24	20 m
202	241156	1556174	17	20 m	587	241935	1556712	24	20 m
203	241155	1556175	17	20 m	588	241935	1556711	24	20 m

204	241169	1556189	18	20 m	589	241934	1556710	24	20 m
						241947	1556695		
205	241170	1556188	18	20 m	590			24	20 m
206	241171	1556187	18	20 m	591	241948	1556695	24	20 m
207	241175	1556183	17	20 m	592	241948	1556696	24	20 m
208	241180	1556179	17	20 m	593	241950	1556698	24	20 m
209	241181	1556178	17	20 m	594	241952	1556700	24	20 m
210	241182	1556177	17	20 m	595	241952	1556701	24	20 m
211	241196	1556191	18	20 m	596	241953	1556701	24	20 m
212	241195	1556192	18	20 m	597	241966	1556685	25	20 m
213	241194	1556193	18	20 m	598	241965	1556685	25	20 m
214	241190	1556197	18	20 m	599	241964	1556684	25	20 m
215	241186	1556200	18	20 m	600	241963	1556683	25	20 m
216	241185	1556201	18	20 m	601	241962	1556682	25	20 m
217	241184	1556201	18	20 m	602	241961	1556682	25	20 m
218	241199	1556216	18	20 m	603	241961	1556681	25	20 m
219	241199	1556215	18	20 m	604	241973	1556665	25	20 m
220	241200	1556214	18	20 m	605	241974	1556665	25	20 m
221	241205	1556210	18	20 m	606	241974	1556666	25	20 m
222	241209	1556206	18	20 m	607	241975	1556668	25	20 m
223	241210	1556205	18	20 m	608	241977	1556670	25	20 m
224	241210	1556204	18	20 m	609	241978	1556671	25	20 m
225	241225	1556219	18	20 m	610	241978	1556671	25	20 m
226	241224	1556220	18	20 m	611	241992	1556655	25	20 m
227	241223	1556220	18	20 m	612	241991	1556655	25	20 m
228	241219	1556224	18	20 m	613	241991	1556654	25	20 m
229	241216	1556228	18	20 m	614	241988	1556652	25	20 m
230	241215	1556228	18	20 m	615	241986	1556650	25	20 m
231	241214	1556229	18	20 m	616	241985	1556650	25	20 m
232	241227	1556243	18	20 m	617	241985	1556649	25	20 m
233	241228	1556242	18	20 m	618	241997	1556634	25	20 m
234	241229	1556242	18	20 m	619	241998	1556634	25	20 m
235	241233	1556238	18	20 m	620	241998	1556635	25	20 m
236	241237	1556234	17	20 m	621	242000	1556637	25	20 m
237	241238	1556233	17	20 m	622	242002	1556639	25	20 m
238	241239	1556232	17	20 m	623	242003	1556640	25	20 m
239	241254	1556246	17	20 m	624	242003	1556640	25	20 m
240	241253	1556247	17	20 m	625	242017	1556625	25	20 m
241	241252	1556247	17	20 m	626	242016	1556625	25	20 m
242	241247	1556251	18	20 m	627	242016	1556624	25	20 m
243	241242	1556256	18	20 m	628	242014	1556622	25	20 m
244	241241	1556257	18	20 m	629	242011	1556620	25	20 m

245	241240	1556258	18	20 m	630	242011	1556619	25	20 m
246	241255	1556273	18	20 m	631	242010	1556618	25	20 m
247	241256	1556272	18	20 m	632	242024	1556603	25	20 m
248	241257	1556271	18	20 m	633	242024	1556604	25	20 m
249	241261	1556266	18	20 m	634	242025	1556605	25	20 m
250	241267	1556262	17	20 m	635	242027	1556607	25	20 m
251	241268	1556261	17	20 m	636	242029	1556609	25	20 m
252	241269	1556260	17	20 m	637	242029	1556610	25	20 m
253	241283	1556273	17	20 m	638	242030	1556610	25	20 m
254	241282	1556274	17	20 m	639	242044	1556595	25	20 m
255	241281	1556275	17	20 m	640	242044	1556595	25	20 m
256	241275	1556280	18	20 m	641	242043	1556594	25	20 m
257	241270	1556284	18	20 m	642	242041	1556592	25	20 m
258	241269	1556285	18	20 m	643	242039	1556590	25	20 m
259	241268	1556286	18	20 m	644	242039	1556590	25	20 m
260	241284	1556300	18	20 m	645	242038	1556589	25	20 m
261	241284	1556299	18	20 m	646	242051	1556572	24	20 m
262	241285	1556298	18	20 m	647	242051	1556573	24	20 m
263	241290	1556294	18	20 m	648	242052	1556573	24	20 m
264	241294	1556289	18	20 m	649	242055	1556577	24	20 m
265	241296	1556288	18	20 m	650	242058	1556582	24	20 m
266	241296	1556287	18	20 m	651	242059	1556582	24	20 m
267	241312	1556300	17	20 m	652	242059	1556583	24	20 m
268	241311	1556301	17	20 m	653	242072	1556567	24	20 m
269	241310	1556302	18	20 m	654	242071	1556567	24	20 m
270	241305	1556306	18	20 m	655	242071	1556566	24	20 m
271	241300	1556311	18	20 m	656	242068	1556563	24	20 m
272	241299	1556312	18	20 m	657	242065	1556560	24	20 m
273	241298	1556313	18	20 m	658	242065	1556559	24	20 m
274	241312	1556327	18	20 m	659	242064	1556559	24	20 m
275	241313	1556326	18	20 m	660	242078	1556544	24	20 m
276	241314	1556325	18	20 m	661	242078	1556544	24	20 m
277	241320	1556320	18	20 m	662	242079	1556545	24	20 m
278	241324	1556316	17	20 m	663	242081	1556548	24	20 m
279	241325	1556315	17	20 m	664	242084	1556551	24	20 m
280	241326	1556314	17	20 m	665	242084	1556551	24	20 m
281	241340	1556329	18	20 m	666	242085	1556552	24	20 m
282	241339	1556330	18	20 m	667	242098	1556536	23	20 m
283	241338	1556331	18	20 m	668	242097	1556535	23	20 m
284	241334	1556334	18	20 m	669	242097	1556535	23	20 m
285	241328	1556339	18	20 m	670	242095	1556533	23	20 m

000	044007	4550040	40	00	074	0.40000	4550500	00	00
286	241327	1556340	18	20 m	671	242092	1556529	23	20 m
287	241326	1556340	18	20 m	672	242092	1556529	23	20 m
288	241340	1556354	18	20 m	673	242091	1556528	23	20 m
289	241341	1556353	18	20 m	674	242104	1556513	23	20 m
290	241341	1556353	18	20 m	675	242104	1556513	23	20 m
291	241347	1556348	18	20 m	676	242105	1556514	23	20 m
292	241352	1556343	18	20 m	677	242107	1556517	23	20 m
293	241353	1556342	18	20 m	678	242110	1556520	23	20 m
294	241354	1556342	18	20 m	679	242110	1556521	23	20 m
295	241368	1556356	18	20 m	680	242111	1556522	23	20 m
296	241367	1556357	18	20 m	681	242124	1556505	23	20 m
297	241366	1556358	18	20 m	682	242123	1556505	23	20 m
298	241362	1556362	18	20 m	683	242123	1556504	23	20 m
299	241356	1556367	19	20 m	684	242120	1556502	23	20 m
300	241355	1556367	19	20 m	685	242117	1556499	23	20 m
301	241354	1556368	19	20 m	686	242116	1556499	23	20 m
302	241368	1556382	19	20 m	687	242116	1556498	23	20 m
303	241369	1556381	19	20 m	688	242128	1556483	23	20 m
304	241370	1556381	19	20 m	689	242129	1556483	23	20 m
305	241375	1556376	19	20 m	690	242129	1556484	23	20 m
306	241380	1556372	19	20 m	691	242131	1556486	23	20 m
307	241381	1556371	18	20 m	692	242133	1556488	23	20 m
308	241382	1556370	18	20 m	693	242134	1556488	23	20 m
309	241397	1556384	19	20 m	694	242134	1556489	23	20 m
310	241397	1556384	19	20 m	695	242145	1556471	23	20 m
311	241395	1556385	19	20 m	696	242144	1556470	23	20 m
312	241390	1556390	19	20 m	697	242144	1556470	23	20 m
313	241385	1556394	19	20 m	698	242141	1556468	23	20 m
314	241384	1556395	19	20 m	699	242140	1556467	23	20 m
315	241383	1556396	19	20 m	700	242139	1556466	23	20 m
316	241396	1556409	20	20 m	701	242138	1556466	23	20 m
317	241397	1556409	20	20 m	702	241844	1556830	24	20 m
318	241398	1556408	20	20 m	703	241843	1556831	24	20 m
319	241404	1556403	19	20 m	704	241843	1556832	24	20 m
320	241408	1556399	19	20 m	705	241838	1556837	24	20 m
321	241409	1556398	19	20 m	706	241832	1556845	24	20 m
322	241410	1556398	19	20 m	707	241831	1556846	24	20 m
323	241424	1556413	19	20 m	708	241830	1556847	24	20 m
324	241423	1556414	19	20 m	709	241845	1556860	24	20 m
325	241422	1556415	19	20 m	710	241846	1556859	24	20 m
326	241417	1556418	20	20 m	711	241846	1556858	24	20 m
				<u> </u>				<u> </u>	

328 2	241413	1556422	20	20 m	712	241851	1556851	24	20 m
	241412	. = =							
320 2		1556423	20	20 m	713	241855	1556846	24	20 m
323 Z	241411	1556423	20	20 m	714	241855	1556846	24	20 m
330 2	241425	1556437	20	20 m	715	241856	1556845	24	20 m
331 2	241426	1556436	20	20 m	716	241871	1556859	24	20 m
332 2	241427	1556436	20	20 m	717	241870	1556860	24	20 m
333 2	241432	1556432	20	20 m	718	241870	1556860	24	20 m
334 2	241436	1556428	20	20 m	719	241865	1556866	24	20 m
335 2	241437	1556428	20	20 m	720	241859	1556873	24	20 m
336 2	241437	1556427	20	20 m	721	241859	1556873	24	20 m
337 2	241452	1556441	20	20 m	722	241858	1556874	24	20 m
338 2	241451	1556442	20	20 m	723	241872	1556889	25	20 m
339 2	241451	1556442	20	20 m	724	241873	1556888	25	20 m
340 2	241446	1556446	20	20 m	725	241874	1556887	25	20 m
341 2	241441	1556450	20	20 m	726	241878	1556881	25	20 m
342 2	241440	1556451	20	20 m	727	241885	1556874	25	20 m
343 2	241440	1556451	20	20 m	728	241886	1556874	25	20 m
344 2	241453	1556467	20	20 m	729	241886	1556873	25	20 m
345 2	241453	1556466	20	20 m	730	241900	1556887	25	20 m
346 2	241454	1556466	20	20 m	731	241899	1556888	25	20 m
347 2	241459	1556461	20	20 m	732	241898	1556889	25	20 m
348 2	241464	1556457	20	20 m	733	241892	1556895	25	20 m
349 2	241464	1556456	20	20 m	734	241887	1556902	25	20 m
350 2	241465	1556456	20	20 m	735	241887	1556903	25	20 m
351 2	241479	1556471	20	20 m	736	241886	1556903	25	20 m
352 2	241479	1556471	20	20 m	737	241900	1556917	25	20 m
	241478	1556472	20	20 m	738	241901	1556917	25	20 m
	241472	1556477	20	20 m	739	241902	1556916	25	20 m
355 2	241467	1556480	20	20 m	740	241907	1556910	25	20 m
	241466	1556481	20	20 m	741	241912	1556903	25	20 m
	241466	1556482	20	20 m	742	241913	1556902	25	20 m
	241479	1556497	21	20 m	743	241914	1556901	25	20 m
	241480	1556496	21	20 m	744	241928	1556915	26	20 m
	241481	1556496	21	20 m	745	241927	1556916	26	20 m
	241487	1556490	20	20 m	746	241927	1556917	26	20 m
	241493	1556485	20	20 m	747	241921	1556923	26	20 m
	241494	1556484	20	20 m	748	241916	1556931	26	20 m
	241495	1556484	20	20 m	749	241915	1556931	26	20 m
	241509	1556498	20	20 m	750	241914	1556933	26	20 m
	241507	1556499	20	20 m	751	241928	1556946	26	20 m
367 2	241506	1556500	20	20 m	752	241928	1556945	26	20 m

368	241500	1556505	21	20 m	753	241929	1556944	26	20 m
369	241494	1556510	21	20 m	754	241935	1556938	26	20 m
370	241494	1556510	21	20 m	755	241941	1556933	26	20 m
371	241493	1556511	21	20 m	756	241941	1556932	26	20 m
372	241509	1556525	21	20 m	757	241942	1556932	26	20 m
373	241510	1556524	21	20 m	758	241956	1556946	26	20 m
374	241511	1556524	21	20 m	759	241955	1556947	26	20 m
375	241516	1556519	21	20 m	760	241954	1556948	26	20 m
376	241520	1556515	21	20 m	761	241949	1556953	26	20 m
377	241521	1556515	21	20 m	762	241943	1556959	26	20 m
378	241522	1556514	20	20 m	763	241943	1556959	26	20 m
379	241535	1556527	21	20 m	764	241942	1556960	26	20 m
380	241534	1556528	21	20 m	765	241956	1556975	27	20 m
381	241534	1556529	21	20 m	766	241957	1556974	27	20 m
382	241530	1556532	21	20 m	767	241958	1556973	27	20 m
383	241526	1556536	21	20 m	768	241963	1556967	27	20 m
384	241525	1556536	21	20 m	769	241967	1556961	27	20 m
385	241524	1556537	21	20 m	770	241968	1556961	27	20 m
					771	241969	1556960	27	20 m

6.3 Estudio de Transito

Para realizar el conteo vehicular se llevaron a cabo los siguientes procedimientos:

Como punto número uno se hiso la elección del sitio del tramo en el cual se llevaría a cabo el conteo vehicular, seguidamente de la determinación de la hora, la fecha y el turno en el cual se realizarían los conteos.

También fue necesario conocer la clasificación de los vehículos para su fácil y rápida identificación en el momento de realizar el conteo.

- ➤ Vehículos livianos: Bicicletas, motos, autos, jeep, camionetas pickup
- Vehículos pesados de pasajeros: Micro bus, micro bus mayor de 15 pasajeros, bus, camión C2.
- Vehículos pesados de carga: C2 liviano, C2 mayor de 5 toneladas, C3, C4, C2R2, C2R3, T2S1, T2S2, T3S1, T3S2, T3S3, vehículos de construcción, vehículos agrícolas. En esta lista se enuncia también vehículos de tracción animal.

El conteo vehicular se realizó el día lunes 20 de mayo de **6:00 AM - 06:00PM** de la tarde. dicho aforo se realizó en dos tramos similares por una semana por 12 horas, la cual del tramo de Reten hacia el empalme del hospital, y del empalme del hospital hacia la entrada principal del hospital

Cada contador encargado, se ubicó en el punto de interés en un lado de la vía de manera que se pudiera contar de forma clara en el primer y en el segundo carril .Se utilizaron formatos para insertar la toma de datos, tablas de campo y tipología de clasificación vehicular (pesados y livianos) que hacen uso de la vía y sus respectivos relojes para llevar el control de tiempo los cuales fuero ajustados por igual para cada contador ya que es importante estar atento a los cambios del tiempo de manera uniforme para obtener buenos resultados y evitar alteraciones o falsos resultados.

Con los datos obtenidos se llevó a cabo los cálculos para la determinación del factor y volumen de hora pico en la estación indicada. También se buscara el V20

(volumen cada 20 minutos) de una manera teórica y calculada el cual se obtiene a partir de la hora pico.

Cálculos

Como punto inicial para empezar con el proceso del conteo de realizo la toma de datos en espacio de 10 min, insertando en los formatos cada uno de los diferentes tipos de vehículos. Livianos y pesados.

Para encontrar el volumen de la hora pico (VHP) se realiza la sumatoria de los vehículos que circulan la intersección en intervalos de una hora, este se obtiene a partir de los datos obtenidas en el campo, donde el volumen de hora pico será el máximo valor resultante.

El factor pico horario se calculará mediante la siguiente expresión.

$$FPH = \frac{VHP}{4 \, X \, V20}$$

El volumen cada 20 minutos (calculado) se obtiene a partir de la hora pico (VHP).

Al conocer la hora pico se procederá a calcularlos los datos levantados por cada 15 minutos y el que se presente con un máximo valor será el V20.

El volumen cada 20 minutos (V20) se calculará de manera teórica a partir de la siguiente expresión.

$$V20_{TEORICO} = VHP X 30\%$$

Resultados del Aforo Vehicular Reten- Empalme del hospital (Mañana)

HORA	BICICLETA	МОТО	AUTOS	JEEP	KAM.PIKO	BUS	C2	C3	T2-5T	T2-S3	T3-S2	TE-S3	TOTAL
6:00-6:10 a.m	26	32	15	0	22	14	13	0	0	0	0	0	122
6:10-6:20 a.m	21	22	16	0	21	12	12	1	0	0	1	0	106
6:20-6:30 a.m	20	20	18	1	24	9	19	1	0	0	2	0	114
6:30-6:40 a.m	18	22	21	1	22	12	17	0	0	0	0	0	113
6:40-6:50 a.m	18	23	24	0	16	11	14	2	0	0	0	0	108
6:50-7:00 a.m	16	25	22	0	21	17	14	2	0	0	0	0	117
7:00-7:10 a.m	23	19	9	0	21	11	11	2	0	0	0	0	96
7:10-7:20 a.m	17	29	11	0	24	12	14	2	1	0	0	0	110
7:20-7:30 a.m	15	31	13	0	18	12	11	0	0	0	0	0	100
7:30-7:40 a.m	17	22	20	0	20	9	18	1	0	0	0	0	107
7:40-7:50 a.m	17	18	17	1	16	9	14	4	0	1	0	0	97
7:50-8:00 a.m	24	27	12	0	18	10	16	0	1	0	0	0	108
8:00-8:10 a.m	18	32	14	0	26	7	14	5	0	0	0	0	116
8:10-8:20 a.m	10	36	18	1	13	5	9	2	0	0	0	0	94
8:20-8:30 a.m	16	44	21	0	18	4	15	2	0	0	0	0	120
8:30-8:40 a.m	16	28	12	0	22	5	14	0	2	1	0	0	100
8:40-8:50 a.m	15	19	25	0	20	5	13	0	0	0	0	0	97
8:50-9 :00 a.m	19	28	23	1	25	2	11	1	2	0	0	0	112
9:00-9:10 a.m	13	21	27	0	20	6	13	1	0	0	0	0	101
9:10-9:20 a.m	18	38	23	1	13	1	16	0	0	0	0	0	110
9:20-9:30 a.m	15	19	27	1	17	2	14	2	0	1	0	0	98
9:30-9:40 a.m	16	22	20	0	20	3	18	2	0	0	0	0	101
9:40-9:50 a.m	11	29	17	0	16	3	12	1	0	0	0	0	89
9:50-10:00 a.m	14	35	18	0	14	7	13	3	0	0	0	0	104
0:00-10:10 a.r	15	38	19	0	11	5	9	0	0	0	0	0	97
0:10-10:20 a.r	19	38	21	0	19	7	13	1	0	0	0	0	118
0:20-10:30 a.r	19	20	26	0	20	9	10	1	0	1	0	0	106
0:30-10:40 a.r	7	17	17	1	18	4	11	0	0	0	0	0	75
0:40-10:50 a.r	11	24	6	0	19	2	8	1	0	0	0	0	71
0:50-11:00 a.r	16	33	15	1	17	4	20	1	1	0	0	0	108
11:00-7:10 a.m	11	17	12	0	23	4	4	1	0	0	0	0	72
1:10-11:20 a.r	18	22	11	0	18	7	9	2	0	0	0	0	87
1:20-11:30 a.r	12	21	13	0	15	2	13	1	0	0	0	0	77
1:30-11:40 a.r	14	32	15	0	9	2	11	0	0	1	0	0	84
1:40-11:50 a.r	12	25	25	0	11	3	13	7	1	2	0	0	99
1:50-12:00 a.r	12	28	25	0	17	8	11	2	0	0	0	0	103
2:00-12:10 p.r	18	30	17	0	11	6	18	2	1	0	0	0	103
2:10-12:20 p.r	11	29	18	1	8	2	14	1	1	0	0	0	85
2:20-12:30 p.r	15	22	22	0	18	3	7	0	0	1	0	0	88
2:30-12:40 p.r	9	28	12	0	12	3	10	1	0	0	0	0	75 50
2:40-12:50 p.r	11	15	10	1	3	6	10	0	0	0	0	0	56
12:50-1:00 p.m	18	21	15	0	6	4	9	1	0	0	0	0	74
TOTAL	661	1101	742	11	722	269	535	56	10	8	3	0	4118

CALCULO DE	COLUMEN DE	HORA PICO	D
НО	RA	TOTAL	
6:00:00 a. m.	7:00:00 a. m.	680	
6:10:00 a. m.	7:10:00 a. m.	654	10:10:00
6:20:00 a. m.	7:20:00 a. m.	658	10:20:00
6:30:00 a. m.	7:30:00 a. m.	644	10:30:00
6:40:00 a. m.	7:40:00 a. m.	638	10:40:00
6:50:00 a. m.	7:50:00 a. m.	627	
7:00:00 a. m.	8:00:00 a. m.	618	10:50:00
7:10:00 a. m.	8:10:00 a. m.	638	11:00:00
7:20:00 a. m.	8:20:00 a. m.	622	
7:30:00 a. m.	8:30:00 a. m.	642	
7:40:00 a. m.	8:40:00 a. m.	635	
7:50:00 a. m.	8:50:00 a. m.	635	
8:00:00 a. m.	9:00:00 a. m.	639	
8:10:00 a. m.	9:10:00 a. m.	624	
8:20:00 a. m.	9:20:00 a. m.	640	
8:30:00 a. m.	9:30:00 a. m.	618	
8:40:00 a. m.	9:40:00 a. m.	619	
8:50:00 a. m.	9:50:00 a. m.	611	
9:00:00 a. m.	10:00:00 a. m.	603	
9:10:00 a. m.	10:10:00 a. m.	599	
9:20:00 a. m.	10:20:00 a. m.	607	
9:30:00 a. m.	10:30:00 a. m.	615	
9:40:00 a. m.	10:40:00 a. m.	589	
9:50:00 a. m.	10:50:00 a. m.	571	
10:00:00 a. m.	11:00:00 a. m.	575	
10:10:00 a. m.	11:10:00 a. m.	550	HORA PICO
10:20:00 a. m.	11:20:00 a. m.	519	
10:30:00 a. m.	11:30:00 a. m.	490	
10:40:00 a. m.	11:40:00 a. m.	499	
10:50:00 a. m.	11:50:00 a. m.	527	
11:00:00 a. m.	12:00:00 p. m.	522	
11:10:00 a. m.	12:10:00 p. m.	553	
11:20:00 a. m.	12:20:00 p. m.	551	
11:30:00 a. m.	12:30:00 p. m.	562	
11:40:00 a. m.	12:40:00 p. m.	553	
11:50:00 a. m.	12:50:00 p. m.	510	
12:00:00 p. m.	1:00:00 p. m.	481	
	TOTAL	21918	

DATOS	PARA HISTOG	RAMA.					
НО	RA	TOTAL					
10:10:00 a. m.	10:10:00 a. m. 10:20:00 a. m.						
10:20:00 a. m.	10:30:00 a. m.	106					
10:30:00 a. m.	10:40:00 a. m.	75					
10:40:00 a. m.	10:50:00 a. m.	71					
10:50:00 a. m.	11:00:00 a. m.	108					
11:00:00 a. m.	11:00:00 a. m. 11:10:00 a. m.						
	TOTAL	550					

EL Resultados del Aforo Vehicular Reten- Empalme del hospital Mañana VHP fue en el intervalo 10:10 – 11:10 AM con él un valor máximo de **550** vehículos por hora.

\			
НО			
10:10:00 a. m.	10:30:00 a. m.	224	V20
10:20:00 a. m.	10:40:00 a. m.	181	
10:30:00 a.m.	10:50:00 a. m.	146	
10:40:00 a. m.	11:00:00 a. m.	179	
10:50:00 a. m.	11:10:00 a. m.	180	
	TOTAL	910	

CALCULO DE FPH

$$PH \frac{VHP}{4 X V20}$$

$$PH = \frac{550}{4 X 920}$$

$$PH = \frac{550}{3680}$$

$$PH = 0.1494$$

$$V20 = VHP X 30\%$$
 $V20 = 550 X 0.3$
 $V20 = 165$

Grafico 4: Datos Para Histograma. TOTAL

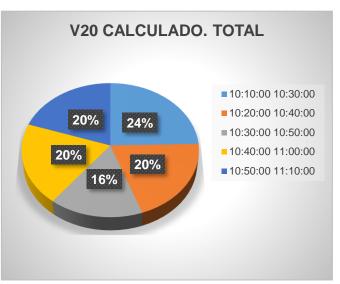


Grafico 5: V20 Calculo. Total

Grafico 6: Grafico Para Histograma

Resultados del Aforo Vehicular reten- empalme del hospital (tarde)

HORA	BICICLETA	МОТО	AUTOS	JEEP	KAM.PIKO	BUS	C2	С3	T2-5T	T2-S3	T3-S2	TE-S3	TOTAL
1:00-1:10 p.m	11	22	14	0	13	2	6	0	0	0	0	0	68
1:10-1:20 p.m	13	26	8	0	14	2	6	2	0	0	0	0	71
1:20-1:30 p.m	19	26	12	2	13	4	9	2	0	0	0	0	87
1:30-1:40 p.m	16	25	18	0	12	4	11	2	1	0	0	0	89
1:40-1:50 p.m	8	35	17	0	10	6	18	0	0	1	0	0	95
1:50-2:00 p.m	17	43	19	2	17	6	15	2	0	0	0	0	121
2:00-2:10 p.m	12	17	17	2	17	2	9	0	0	0	0	0	76
2:10-2:20 p.m	11	34	21	0	20	7	16	0	0	0	1	0	110
2:20-2:30 p.m	14	49	18	0	18	6	10	2	0	0	0	0	117
2:30-2:40 p.m	15	25	13	0	20	4	15	3	0	0	0	0	95
2:40-2:50 p.m	16	27	13	0	19	6	20	0	0	0	0	0	101
2:50-3:00 p.m	16	33	16	0	17	6	17	2	0	0	0	0	107
3:00-3:10 p.m	16	34	20	0	14	1	10	0	0	0	0	0	95
3:10-3:20 p.m	14	29	28	1	12	6	16	5	2	1	0	0	114
3:20-3:30 p.m	11	26	13	0	20	8	15	0	0	0	0	0	93
3:30-3:40 p.m	12	27	16	0	23	1	9	4	0	0	0	0	92
3:40-3:50 p.m	16	16	18	1	18	5	17	2	0	1	0	1	95
3:50-4:00 p.m	13	22	26	1	14	2	18	1	3	1	0	0	101
4:00-4:10 p.m	13	19	17	0	14	1	16	0	0	1	0	0	81
4:10-4:20 p.m	13	22	19	0	20	7	19	3	0	1	0	0	104
4:20-4:30 p.m	14	37	23	0	16	7	19	1	0	2	0	0	119
4:30-4:40 p.m	14	26	13	0	15	9	11	0	0	0	1	0	89
4:40-4:50 p.m	14	21	21	0	19	9	14	1	1	0	0	0	100
4:50-5:00 p.m	19	24	15	1	21	6	9	0	0	0	0	0	95
5:00-5:10 p.m	15	22	18	0	19	3	15	1	1	0	0	0	94
5:10-5:20 p.m	10	27	9	1	16	3	12	1	0	0	0	1	80
5:20-5:30 p.m	9	29	15	1	23	5	16	3	2	0	1	0	104
5:30-5:40 p.m	18	28	12	0	17	6	8	0	1	0	0	0	90
5:40-5:50 p.m	9	26	13	0	20	1	7	2	2	0	0	0	80
5:50-6:00 p.m	5	22	8	0	11	1	9	0	0	0	0	0	56
TOTAL	403	819	490	12	502	136	392	39	13	8	3	2	2819

CALCULO F	IORA PICO.		D/
НО	RA	T0TAL	
1:00:00 p. m.	2:00:00 p. m.	531	2:20:00
1:10:00 p. m.	2:10:00 p. m.	539	2:30:00
1:20:00 p. m.	2:20:00 p. m.	578	2:40:00
1:30:00 p. m.	2:30:00 p. m.	608	2:50:00
1:40:00 p. m.	2:40:00 p. m.	614	3:00:00 3:10:00
1:50:00 p. m.	2:50:00 p. m.	620	3.10.00
2:00:00 p. m.	3:00:00 p. m.	606	
2:10:00 p. m.	3:10:00 p. m.	625	
2:20:00 p. m.	3:20:00 p. m.	629	HORA PICO
2:30:00 p. m.	3:30:00 p. m.	605	
2:40:00 p. m.	3:40:00 p. m.	602	
2:50:00 p. m.	3:50:00 p. m.	596	
3:00:00 p. m.	4:00:00 p. m.	590	
3:10:00 p. m.	4:10:00 p. m.	576	
3:20:00 p. m.	4:20:00 p. m.	566	
3:30:00 p. m.	4:30:00 p. m.	592	
3:40:00 p. m.	4:40:00 p. m.	589	
3:50:00 p. m.	4:50:00 p. m.	594	
4:00:00 p. m.	5:00:00 p. m.	588	
4:10:00 p. m.	5:10:00 p. m.	601	
4:20:00 p. m.	5:20:00 p. m.	577	
4:30:00 p. m.	5:30:00 p. m.	562	
4:40:00 p. m.	5:40:00 p. m.	563	
4:50:00 p. m.	5:50:00 p. m.	543	
5:00:00 p. m.	6:00:00 p. m.	504	
	TOTAL	7537	

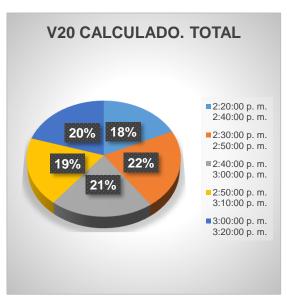
DATOS PARA HISTOGRAMA									
НО	TOTAL								
2:20:00 p. m.	2:30:00 p. m.	76							
2:30:00 p. m.	2:40:00 p. m.	110							
2:40:00 p. m.	2:50:00 p. m.	117							
2:50:00 p. m.	3:00:00 p. m.	95							
3:00:00 p. m.	3:10:00 p. m.	101							
3:10:00 p. m.	· · · · · · · · · · · · · · · · · · ·								
	TOTAL	606							

El Resultados del Aforo Vehicular reten- empalme del hospital tarde, VHP fue en el intervalo 10:10 – 11:10 AM con él un valor máximo de **629** vehículos por hora.

V20 CALCULADO.										
	HORA	TOTAL								
2:20:00 p. m.	2:40:00 p. m.	186								
2:30:00 p. m.	2:50:00 p. m.	227	V20							
2:40:00 p. m.	3:00:00 p. m.	212								
2:50:00 p. m.	3:10:00 p. m.	196								
3:00:00 p. m.	3:20:00 p. m.	208								
	TOTAL	1029								

CALCULO DE FPH

$$PH \frac{VHP}{4 X V20}$$


$$PH = \frac{629}{4 X 1029}$$

$$PH = \frac{629}{4,116}$$

$$PH = 0.1528$$

$$V20 = VHP X 30\%$$

 $V20 = 629 X 0.3$
 $V20 = 188.7$

Datos Para Histograma. TOTAL

Grafico 8: V20 Calculo. Total

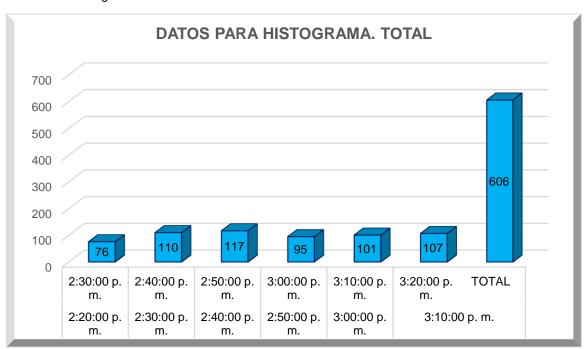


Grafico 9: Datos Para Histograma. TOTAL

Resultados del Aforo Vehicular empalme - entrada del hospital (Mañana)

BUSORA	BICICLETA	МОТО	AUTOS	JEEP	KAM.PIKO	BUS	C2	C3	T2-5T	T2-S3	T3-S2	TE-S3	TOTAL
6:00-6:10 a.m	22	26	13	0	19	13	9	4	0	0	0	0	106
6:10-6:20 a.m	18	23	22	2	18	15	12	6	0	0	1	0	117
6:20-6:30 a.m	17	19	20	1	22	12	17	4	0	0	1	0	113
6:30-6:40 a.m	16	22	22	2	21	13	14	5	0	0	0	1	116
6:40-6:50 a.m	15	24	25	3	16	12	13	7	0	0	0	0	115
6:50-7:00 a.m	14	26	22	2	20	15	14	4	0	0	0	0	117
7:00-7:10 a.m	21	21	11	1	21	12	13	2	0	0	0	0	102
7:10-7:20 a.m	15	28	10	0	22	10	14	2	1	0	0	0	102
7:20-7:30 a.m	14	29	14	1	15	14	11	2	0	0	0	0	100
7:30-7:40 a.m	15	20	23	2	18	12	18	3	0	0	0	0	111
7:40-7:50 a.m	16	19	20	2	15	10	12	7	1	1	0	0	103
7:50-8:00 a.m	23	23	13	0	18	10	16	3	1	0	0	0	107
8:00-8:10 a.m	17	30	19	0	22	7	14	7	0	0	0	0	116
8:10-8:20 a.m	10	35	21	1	13	9	9	3	0	0	0	0	101
8:20-8:30 a.m	15	36	21	0	15	4	11	6	0	0	0	0	108
8:30-8:40 a.m	13	26	17	2	20	8	13	5	1	1	0	0	106
8:40-8:50 a.m	15	19	28	3	18	6	12	2	0	1	0	0	104
8:50-9 :00 a.m	18	23	25	1	21	4	12	2	2	0	0	0	108
9:00-9:10 a.m	10	18	28	1	16	9	12	2	0	0	0	0	96
9:10-9:20 a.m	18	34	26	5	9	5	15	3	0	0	0	0	115
9:20-9:30 a.m	15	17	32	2	17	5	12	6	0	1	0	0	107
9:30-9:40 a.m	16	18	21	2	20	2	18	5	0	0	0	0	102
9:40-9:50 a.m	11	24	21	1	16	3	13	3	1	0	0	0	93
9:50-10:00 a.m	14	31	22	0	14	7	10	6	0	0	0	0	104
10:00-10:10 a.m	14	33	23	1	9	4	9	4	1	0	0	0	98
10:10-10:20 a.m	14	35	25	0	16	8	14	1	0	0	0	0	113
10:20-10:30 a.m	18	23	27	1	16	12	9	4	1	1	0	0	112
10:30-10:40 a.m	6	16	19	4	18	8	11	2	0	0	0	0	84
10:40-10:50 a.m	11	21	8	0	18	2	6	3	0	0	0	0	69
10:50-11:00 a.m	15	28	19	0	14	5	16	8	2	0	0	0	107
11:00-7:10 a.m	11	16	16	0	20	7	4	6	1	0	0	0	81
11:10-11:20 a.m	18	22	13	1	17	11	7	4	0	0	0	0	93
11:20-11:30 a.m	11	19	13	0	14	3	13	3	0	0	0	0	76
11:30-11:40 a.m	13	26	11	0	9	3	11	0	0	1	0	0	74
11:40-11:50 a.m	11	22	29	6	9	3	11	9	1	2	0	0	103
11:50-12:00 a.m	12	24	26	3	15	10	10	5	0	0	0	0	105
12:00-12:10 p.m	18	25	22	3	6	7	16	7	3	0	0	0	107
12:10-12:20 p.m	10	26	23	1	7	7	14	4	1	0	0	0	93
12:20-12:30 p.m	14	22	22	0	13	3	6	2	0	1	0	0	83
12:30-12:40 p.m	8	25	13	3	10	8	10	3	0	0	0	0	80
12:40-12:50 p.m	11	13	12	1	3	7	9	3	1	0	0	0	60
12:50-1:00 p.m	15	19	15	2	5	3	9	3	0	0	0	0	71
TOTAL	608	1006	832	60	645	328	499	170	18	9	2	1	4178

CALCULO	HORA PICO. MA	AÑANA	
HORA		T0TAL	
6:00:00 a. m.	7:00:00 a. m.	684	HORA PICO
_{rya} 6:10:00 a. m.	7:10:00 a. m.	680	
6:20:00 a. m.	7:20:00 a. m.	665	D
6:30:00 a. m.	7:30:00 a. m.	652	
6:40:00 a. m.	7:40:00 a. m.	647	6:00:0
6:50:00 a. m.	7:50:00 a. m.	635	l '
7:00:00 a. m.	8:00:00 a. m.	625	6:10:0
7:10:00 a. m.	8:10:00 a. m.	639	6:20:0
7:20:00 a. m.	8:20:00 a. m.	638	6:30:0
7:30:00 a. m.	8:30:00 a. m.	646	6:40:0
7:40:00 a. m.	8:40:00 a. m.	641	6:50:0
7:50:00 a. m.	8:50:00 a. m.	642	0.00.0
8:00:00 a. m.	9:00:00 a. m.	643	
8:10:00 a. m.	9:10:00 a. m.	623	
8:20:00 a. m.	9:20:00 a. m.	637	
8:30:00 a. m.	9:30:00 a. m.	636	
8:40:00 a. m.	9:40:00 a. m.	632	
8:50:00 a. m.	9:50:00 a. m.	621	
9:00:00 a. m.	10:00:00 a. m.	617	
9:10:00 a. m.	10:10:00 a. m.	619	
9:20:00 a. m.	10:20:00 a. m.	617	
9:30:00 a. m.	10:30:00 a. m.	622	
9:40:00 a. m.	10:40:00 a. m.	604	
9:50:00 a. m.	10:50:00 a. m.	580	
10:00:00 a. m.	11:00:00 a. m.	583	
10:10:00 a. m.	11:10:00 a. m.	566	
10:20:00 a. m.	11:20:00 a. m.	546	
10:30:00 a. m.	11:30:00 a. m.	510	
10:40:00 a. m.	11:40:00 a. m.	500	
10:50:00 a. m.	11:50:00 a. m.	534	
11:00:00 a. m.	12:00:00 p. m.	532	
11:10:00 a. m.	12:10:00 p. m.	558	
11:20:00 a. m.	12:20:00 p. m.	558	
11:30:00 a. m.	12:30:00 p. m.	565	
11:40:00 a. m.	12:40:00 p. m.	571	
11:50:00 a. m.	12:50:00 p. m.	528	
12:00:00 p. m.	1:00:00 p. m.	494	

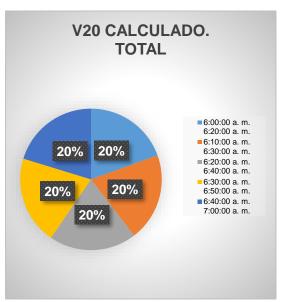
DATOS PARA HISTOGRAMA										
НО	HORA									
6:00:00 a. m.	6:10:00 a. m.	106								
6:10:00 a. m.	6:20:00 a. m.	117								
6:20:00 a. m.	6:30:00 a. m.	113								
6:30:00 a. m.	6:40:00 a. m.	116								
6:40:00 a. m.	6:50:00 a. m.	115								
6:50:00 a. m.	7:00:00 a. m.	117								
	TOTAL	684								

El Resultados del Aforo Vehicular empalme - entrada del hospital Mañana, VHP fue en el intervalo 06:10 – 11:10 AM con él un valor máximo de 684 vehículos por hora.

HC	RA	TOTAL	
6:00:00 a. m.	6:20:00 a. m.	223	
6:10:00 a. m.	6:30:00 a. m.	230	
6:20:00 a. m.	6:40:00 a. m.	229	
6:30:00 a. m.	6:50:00 a. m.	231	
6:40:00 a. m.	7:00:00 a. m.	232	v20
	TOTAL	1145	_

CALCULO DE FPH

$$PH \frac{VHP}{4 X V20}$$


$$PH = \frac{684}{4 X 1145}$$

$$PH = \frac{684}{4,580}$$

$$PH = 0.1493$$

$$V20 = VHP X 30\%$$

 $V20 = 684X 0.3$
 $V20 = 205.2$

Datos Para Histograma. TOTAL

Grafico 11: V20 Calculo. Total

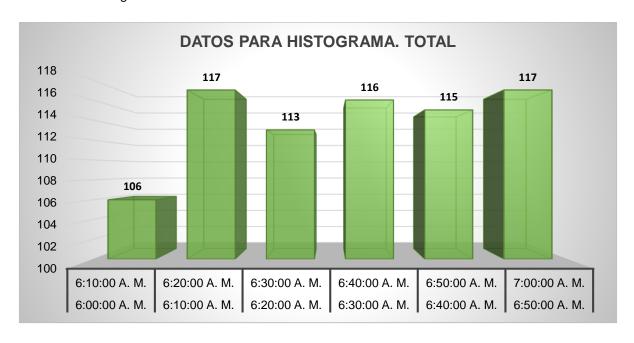


Grafico 12: Datos Para Histograma. TOTAL

Resultados del Aforo Vehicular empalme - entrada del hospital (tarde)

HORA	BICICLETA	МОТО	AUTOS	JEEP	KAM.PIKO	BUS	C2	C3	T2-5T	T2-S3	T3-S2	TE-S3	TOTAL
1:00-1:10 p.m	10	18	12	0	12	2	4	0	0	0	0	0	58
1:10-1:20 p.m	13	22	11	2	11	3	5	4	0	0	0	0	71
1:20-1:30 p.m	18	24	16	2	11	7	8	3	0	0	0	0	89
1:30-1:40 p.m	15	26	19	1	12	6	11	3	1	0	0	0	94
1:40-1:50 p.m	8	32	15	1	10	7	13	0	0	1	0	0	87
1:50-2:00 p.m	17	40	19	3	16	4	14	7	0	0	0	0	120
2:00-2:10 p.m	11	16	15	5	17	2	10	1	0	0	0	0	77
2:10-2:20 p.m	11	32	20	5	20	7	15	1	0	0	1	0	112
2:20-2:30 p.m	14	43	19	2	15	6	9	3	0	0	0	0	111
2:30-2:40 p.m	15	22	17	2	20	6	15	5	1	0	0	0	103
2:40-2:50 p.m	16	26	14	2	17	5	20	1	0	0	0	0	101
2:50-3:00 p.m	16	28	15	2	17	8	17	3	0	0	0	0	106
3:00-3:10 p.m	14	30	25	2	14	0	10	1	0	0	0	0	96
3:10-3:20 p.m	14	30	30	1	10	6	15	4	2	1	0	0	113
3:20-3:30 p.m	11	23	13	2	19	8	12	2	1	0	0	0	91
3:30-3:40 p.m	12	25	17	1	21	2	11	6	0	0	0	0	95
3:40-3:50 p.m	15	14	19	3	18	7	16	1	1	0	0	1	95
3:50-4:00 p.m	12	20	27	2	14	2	16	2	4	0	1	0	100
4:00-4:10 p.m	12	18	17	1	13	1	14	2	0	1	1	0	80
4:10-4:20 p.m	13	20	19	3	15	7	17	4	0	0	0	0	98
4:20-4:30 p.m	14	33	24	2	16	12	17	3	1	2	1	0	125
4:30-4:40 p.m	13	22	17	2	15	8	10	3	0	0	1	0	91
4:40-4:50 p.m	14	18	23	0	19	8	13	2	1	0	0	0	98
4:50-5:00 p.m	19	21	18	3	16	6	9	2	0	0	0	0	94
5:00-5:10 p.m	14	17	20	1	18	8	14	2	1	0	0	0	95
5:10-5:20 p.m	9	16	14	2	13	3	12	2	0	0	0	1	72
5:20-5:30 p.m	9	25	23	1	23	8	15	2	2	0	1	0	109
5:30-5:40 p.m	18	24	17	4	16	6	7	2	2	0	0	0	96
5:40-5:50 p.m	9	19	15	0	17	2	3	2	2	0	0	0	69
5:50-6:00 p.m	5	20	15	2	10	4	9	4	1	0	0	0	70
TOTAL	391	724	545	59	465	161	361	77	20	5	6	2	2816

CALCULO HORA PICO.										
HC	RA	T0TAL								
1:00:00 p. m.	2:00:00 p. m.	519								
1:10:00 p. m.	2:10:00 p. m.	538								
1:20:00 p. m.	2:20:00 p. m.	579								
1:30:00 p. m.	2:30:00 p. m.	601								
1:40:00 p. m.	2:40:00 p. m.	610								
1:50:00 p. m.	2:50:00 p. m.	624								
2:00:00 p. m.	3:00:00 p. m.	610								
2:10:00 p. m.	3:10:00 p. m.	629								
2:20:00 p. m.	3:20:00 p. m.	630								
2:30:00 p. m.	3:30:00 p. m.	610								
2:40:00 p. m.	3:40:00 p. m.	602								
2:50:00 p. m.	3:50:00 p. m.	596								
3:00:00 p. m.	4:00:00 p. m.	590								
3:10:00 p. m.	4:10:00 p. m.	574								
3:20:00 p. m.	4:20:00 p. m.	559								
3:30:00 p. m.	4:30:00 p. m.	593								
3:40:00 p. m.	4:40:00 p. m.	589								
3:50:00 p. m.	4:50:00 p. m.	592								
4:00:00 p. m.	5:00:00 p. m.	586								
4:10:00 p. m.	5:10:00 p. m.	601								
4:20:00 p. m.	5:20:00 p. m.	575								
4:30:00 p. m.	5:30:00 p. m.	559								
4:40:00 p. m.	5:40:00 p. m.	564								
4:50:00 p. m.	5:50:00 p. m.	535								
5:00:00 p. m.	6:00:00 p. m.	511								
	TOTAL	14576								

DATOS PARA HISTOGRAMA.									
НО	TOTAL								
2:20:00 p. m.	2:30:00 p. m.	111							
	2:40:00 p. m.	103							
2:40:00 p. m.	2:50:00 p. m.	101							
2:50:00 p. m.	3:00:00 p. m.	106							
3:00:00 p. m.	3:10:00 p. m.	96							
3:10:00 p. m.	3:20:00 p. m.	113							
	TOTAL	630							

HORA PICO

El Resultados del Aforo Vehicular empalme - entrada del hospital tarde VHP fue en el intervalo 2:20 – 3:20 AM con él un valor máximo de 630 vehículos por hora.

НО	RA	TOTAL	
2:20:00 p. m.	2:40:00 p. m.	214	v20
2:30:00 p. m.	2:50:00 p. m.	204	
2:40:00 p. m.	3:00:00 p. m.	207	
2:50:00 p. m.	3:10:00 p. m.	202	
3:00:00 p. m.	3:20:00 p. m.	209	
	TOTAL	1036	

CALCULO DE FPH

$$PH \frac{VHP}{4 X V20}$$

$$PH = \frac{630}{4 X 1036}$$

$$PH = \frac{630}{4,114}$$

$$PH = 0.1531$$

$$V20 = VHP X 30\%$$

 $V20 = 630X 0.3$
 $V20 = 189$

El Resultados del Aforo Vehicular empalme - entrada del hospital tarde VHP fue en el intervalo 2:20 – 3:20 AM con él un valor máximo de 630 vehículos por hora.

НО	RA	TOTAL	
2:20:00 p. m.	2:40:00 p. m.	214	v20
2:30:00 p. m.	2:50:00 p. m.	204	
2:40:00 p. m.	3:00:00 p. m.	207	
2:50:00 p. m.	3:10:00 p. m.	202	
3:00:00 p. m.	3:20:00 p. m.	209	
	TOTAL	1036	

CALCULO DE FPH

$$PH \frac{VHP}{4 X V20}$$

$$PH = \frac{630}{4 X 1036}$$

$$PH = \frac{630}{4,114}$$

$$PH = 0.1531$$

$$V20 = VHP X 30\%$$

 $V20 = 630X 0.3$
 $V20 = 189$

Resultados generales del Aforo Vehicular de los dos tramos de (mañana y tarde)

HORA	BICICLETA	МОТО	AUTOS	JEEP	KAM.PIKO	BUS	C2	C3	T2-5T	T2-S3	T3-S2	TE-S3	TOTAL
6:00-6:10 a.m	44	55	37	2	40	29	25	6	0	0	1	0	239
6:10-6:20 a.m	39	45	38	2	39	27	24	7	0	0	2	0	223
6:20-6:30 a.m	38	43	40	3	42	24	31	7	0	0	3	0	231
6:30-6:40 a.m 6:40-6:50 a.m	36 36	45 46	43 46	3 2	40 34	27 26	29 26	6 8	0	0	1	0	230 225
6:50-7:00 a.m	34	48	44	2	39	32	26	8	0	0	1	0	234
7:00-7:10 a.m	41	42	31	2	39	26	23	8	0	0	1	0	213
7:10-7:20 a.m	35	52	33	2	42	27	26	8	1	0	1	0	227
7:20-7:30 a.m	33	54	35	2	36	27	23	6	0	0	1	0	217
7:30-7:40 a.m	35	45	42	2	38	24	30	7	0	0	1	0	224
7:40-7:50 a.m	35	41	39	3	34	24	26	10	0	1	1	0	214
7:50-8:00 a.m	42	50	34	2	36	25	28	6	1	0	1	0	225
8:00-8:10 a.m	36 28	55 59	36 40	2	44 31	22	26 21	11 8	0	0	1	0	233 211
8:10-8:20 a.m 8:20-8:30 a.m	34	67	43	3 2	36	19	27	8	0	0	1	0	237
8:30-8:40 a.m	34	51	34	2	40	20	26	6	2	1	1	0	217
8:40-8:50 a.m	33	42	47	2	38	20	25	6	0	0	1	0	214
8:50-9 :00 a.m	37	51	45	3	43	17	23	7	2	0	1	0	229
9:00-9:10 a.m	31	44	49	2	38	21	25	7	0	0	1	0	218
9:10-9:20 a.m	36	61	45	3	31	16	28	6	0	0	1	0	227
9:20-9:30 a.m	33	42	49	3	35	17	26	8	0	1	1	0	215
9:30-9:40 a.m 9:40-9:50 a.m	34 29	45 52	42 39	2	38 34	18 18	30 24	8 7	0	0	1	0	218 206
9:50-10:00 a.m		58	40	2	32	22	25	9	0	0	1	0	221
10:00-10:10 a.n		61	41	2	29	20	21	6	0	0	1	0	214
10:10-10:20 a.n	37	61	43	2	37	22	25	7	0	0	1	0	235
10:20-10:30 a.n		43	48	2	38	24	22	7	0	1	1	0	223
10:30-10:40 a.n		40	39	3	36	19	23	6	0	0	1	0	192
10:40-10:50 a.n		47 56	28 37	2	37	17	20	7	0	0	1	0	188
10:50-11:00 a.n		40	34	3 2	35 41	19 19	32 16	7	0	0	1	0	225 189
11:10-11:20 a.n		45	33	2	36	22	21	8	0	0	1	0	204
11:20-11:30 a.n		44	35	2	33	17	25	7	0	0	1	0	194
11:30-11:40 a.n	r 32	55	37	2	27	17	23	6	0	1	1	0	201
11:40-11:50 a.n		48	47	2	29	18	25	13	1	2	1	0	216
11:50-12:00 a.n		51	47	2	35	23	23	8	0	0	1	0	220
12:00-12:10 p.n 12:10-12:20 p.n		53 52	39 40	3	29 26	21 17	30 26	<u>8</u> 7	1	0	1	0	220 202
12:20-12:30 p.n		45	44	2	36	18	19	6	0	1	1	0	205
12:30-12:40 p.n		51	34	2	30	18	22	7	0	0	1	0	192
12:40-12:50 p.n	r 29	38	32	3	21	21	22	6	0	0	1	0	173
12:50-1:00 p.m		44	37	2	24	19	21	7	0	0	1	0	191
1:00-1:10 p.m	29	45	36	2	31	17	18	6	0	0	1	0	185
1:10-1:20 p.m 1:20-1:30 p.m	31 37	49 49	30 34	2 4	32 31	17 19	18 21	8 8	0	0	1	0	188 204
1:30-1:40 p.m	34	48	40	2	30	19	23	8	1	0	1	0	206
1:40-1:50 p.m	26	58	39	2	28	21	30	6	0	1	1	0	212
1:50-2:00 p.m	35	66	41	4	35	21	27	8	0	0	1	0	238
2:00-2:10 p.m	30	40	39	4	35	17	21	6	0	0	1	0	193
2:10-2:20 p.m	29	57	43	2	38	22	28	6	0	0	2	0	227
2:20-2:30 p.m 2:30-2:40 p.m	32 33	72 48	40 35	2	36 38	21 19	22 27	8 9	0	0	1	0	234 212
2:40-2:50 p.m	34	50	35	2	37	21	32	6	0	0	1	0	212
2:50-3:00 p.m	34	56	38	2	35	21	29	8	0	0	1	0	224
3:00-3:10 p.m	34	57	42	2	32	16	22	6	0	0	1	0	212
3:10-3:20 p.m		52	50	3	30	21	28	11	2	1	1	0	231
3:20-3:30 p.m		49	35	2	38	23	27	6	0	0	1	0	210
3:30-3:40 p.m 3:40-3:50 p.m	30 34	50 39	38 40	3	41 36	16 20	21 29	10 8	0	0	1	0	209 212
3:40-3:50 p.m 3:50-4:00 p.m	31	45	40	3	36	17	30	7	3	1	1	0	212
4:00-4:10 p.m	31	42	39	2	32	16	28	6	0	1	1	0	198
4:10-4:20 p.m		45	41	2	38	22	31	9	0	1	1	0	221
4:20-4:30 p.m	32	60	45	2	34	22	31	7	0	2	1	0	236
4:30-4:40 p.m	32	49	35	2	33	24	23	6	0	0	2	0	206
4:40-4:50 p.m		44	43	2	37	24	26	7	1	0	1	0	217
4:50-5:00 p.m 5:00-5:10 p.m	37 33	47 45	37 40	3 2	39 37	21 18	21 27	6 7	0	0	1	0	212 211
5:10-5:20 p.m		50	31	3	34	18	24	7	0	0	1	1	197
5:20-5:30 p.m	27	52	37	3	41	20	28	9	2	0	2	0	221
5:30-5:40 p.m	36	51	34	2	35	21	20	6	1	0	1	0	207
5:40-5:50 p.m	27	49	35	2	38	16	19	8	2	0	1	0	197
5:50-6:00 p.m	23	45	30	2	29	16	21	6	0	0	1	0	173
TOTAL	2360	3576	2816	167	2520	1485	1791	527	23	16	78	2	15361

CALCULO DE COLUMEN DE HORA PICO TOTAL 6:10:00 a. m. 7:10:00 a. m. 1356 6:20:00 a. m. 7:20:00 a. m. 1360 7:30:00 a. m. 1346 6:30:00 a. m. 7:40:00 a. m. 6:40:00 a. m. 1340 6:50:00 a. m. 7:50:00 a. m. 1329 7:00:00 a. m. 8:00:00 a. m. 1320 8:10:00 a. m. 7:10:00 a. m. 1340 7:20:00 a. m. 8:20:00 a. m. 1324 7:30:00 a. m. 8:30:00 a. m. 1344 7:40:00 a. m. 8:40:00 a. m. 1337 7:50:00 a. m. 8:50:00 a. m. 1337 8:00:00 a. m. 9:00:00 a. m. 1341 8:10:00 a. m. 9:10:00 a. m. 1326 8:20:00 a. m. 9:20:00 a. m 1342 9:30:00 a.m. 8:30:00 a. m. 1320 9:40:00 a. m. 8:40:00 a. m. 1321 8:50:00 a. m. 9:50:00 a. m. 1313 10:00:00 a.m. 9:00:00 a. m. 1305 9:10:00 a. m. 10:10:00 a.m. 1301 10:20:00 a.m. 9:20:00 a. m. 1309 10:30:00 a. m. 9:30:00 a. m. 1317 9:40:00 a. m. 10:40:00 a.m. 1291 9:50:00 a. m. 10:50:00 a.m. 10:00:00 a. m. 11:00:00 a.m. 1277 10:10:00 a. m. 11:10:00 a. m. 1252 11:20:00 a.m. 1221 10:20:00 a. m. 11:30:00 a. m. 1192 10:30:00 a. m. 10:40:00 a. m. 11:40:00 a.m. 1201 10:50:00 a.m. 11:50:00 a. m. 11:00:00 a. m. 12:00:00 p. m. 1224 11:10<u>:00</u> a. m. 12:10:00 p. m. 1255 12:20:00 p. m. 11:20:00 a.m. 1253 11:30:00 a. m. 12:30:00 p. m. 1264 12:40:00 p. m. 11:40:00 a. m. 1255 11:50:00 a.m. 12:50:00 p. m. 1212 12:00:00 p. m. 1:00:00 p. m 1183 12:10:00 p. m. 1:10:00 p. m. 1148 12:2<u>0:</u>00 p. m. 1:20:00 p. m. 1134 12:30:00 p. m. 1:30:00 p. m. 1133 12:40<u>:00 p</u>. m. 1:40:00 p. m. 1147 12:50:00 p. m. 1:50:00 p. m. 1186 1:00:00 p. m. 2:00:00 p. m. 1233 2:10:00 p. m. 1:10:00 p. m. 1241 1:20:00 p. m. 2:20:00 p. m. 1280 2:30:00 p. m. 1310 1:30:00 p. m. 1:40:00 p. m. 2:40:00 p. m. 1316 2:50:00 p. m. 1:50:00 p. m. 1322 2:00:00 p. m. 3:00:00 p. m. 1308 2:10:00 p. m. 3:10:00 p. m. 1327 3:20:00 p. m. 2:20:00 p. m. 1331 3:30<u>:00</u> p. m. 2:30:00 p. m. 1307 2:40:00 p. m. 3:40:00 p. m. 1304 3:5<u>0:00 p</u>. m. 2:50:00 p. m. 1298 3:00:00 p. m. 4:00:00 p. m. 1292 4:10:<u>00</u> p. m. 3:10:00 p. m. 1278 3:20:00 p. m. 4:20:00 p. m. 1268 3:30:00 p. m. 4:30:00 p. m 1294 3:40:00 p. m. 4:40:00 p. m. 1291 3:50:00 p. m. 4:50:00 p. m. 1296 4:00:00 p. m. 5:00:00 p. m 1290 4:10:<u>00</u> p. m. 5:10:00 p. m 1303 4:20:00 p. m. 5:20:00 p. m. 1279 4:30:00 p. m. 5:30:00 p. m. 1264 4:40:00 p. m. 5:40:00 p. m. 1265 4:50:00 p. m. 5:50:00 p. m. 1245 5:00:00 p. m. 6:00:00 p. m. 1206

HORA PICO

DATOS PARA HISTOGRAMA.										
НО	TOTAL									
6:00:00 a. m.	1382									
6:10:00 a. m.	6:20:00 a. m.	1356								
6:20:00 a. m.	6:30:00 a. m.	1360								
6:30:00 a. m.	6:40:00 a. m.	1346								
6:40:00 a. m.	6:50:00 a. m.	1340								
6:50:00 a. m.	1329									
	TOTAL	8113								

El resultado general del VHP fue en el intervalo 6:00-7:00 AM con él un valor máximo de **1382** vehículos por hora.

HC	RA	TOTAL	
6:00:00 a. m.	6:20:00 a. m.	462	V20
6:10:00 a. m.	6:30:00 a.m.	454	
6:20:00 a. m.	6:40:00 a.m.	461	
6:30:00 a. m.	6:50:00 a. m.	455	
6:40:00 a. m.	7:00:00 a. m.	459	
	TOTAL	1329	

CALCULO DE FPH

$$PH \frac{VHP}{4 X V20}$$

$$PH = \frac{1382}{4 X 1329}$$

$$PH = \frac{1382}{5316}$$

$$PH = 02599$$

$$V20 = VHP X 30\%$$

 $V20 = 1382 X 0.3$
 $V20 = 398.7$

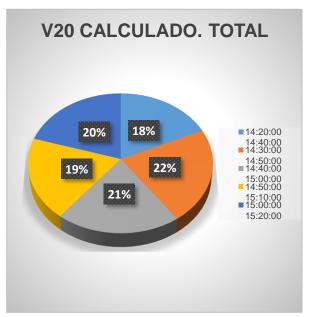


Gráfico 16: Datos Para Histograma Total

Grafico 17: V20 Calculo Total

Grafico 18: Grafico Para Histograma

6.4 Estudio geotécnico

El presente informe es el resultado del estudio mecánica de suelos con fines de cimentación para la elaboración del Estudio Definitivo del tramo de carretera de Reten- Entrada principal del hospital Regional de Bilwi.

Para tal fin se ha realizado un programa de investigaciones geotécnicas que consiste en revisión de la información, inspección técnica, ensayos de campo, ensayos de laboratorio, obtención del perfil estratigráfico y análisis de cimentación del área de interés.

El presente informe de campo documenta un resumen de tablas de las investigaciones geotécnicas ejecutadas para el presente estudio.

Ensayo de laboratorio

Los ensayos de laboratorio comprenden los ensayos de carga puntual, ensayo de propiedades físicas del suelo.

El ensayo se realizó en el laboratorio geotécnico de geo control ingenieros (Makiber)

Proceso de los ensayos.

Se tomó un total de 9 muestras alteradas e inalteradas de la excavación para la ejecución de los ensayos de laboratorio correspondientes, para la cual cada muestra fue edificada convenientemente y embalada en bolsas de polietileno que fueron remetidas al laboratorio.

Con las muestras alteradas obtenidas de la excavación (calicatas), se realizó ensayos estándar de clasificación de suelos, CBR y de propiedades físicas consistente en: análisis granulométricos por tamizado y contenido de humedad.

En los ensayos se ejecutaron siguiendo las normas de American Society for Testing and Materials (ASTM). Las normas para esto ensayos son las siguientes.

Análisis Granulométricos .Contenido de humedad. CBR

DETERMINACIÓN DE COMPOSICIÓN GRANULOMETRÍA Y PESO VOLUMÉTRICO DE MATERIALES SECO SUELTO

Estudiantes: George Gutiérrez y Donald Vega

Proyecto: <u>DISEÑO DE PAVIMENTO RIGIDO DEL TRAMO SUBURBANO "EL RETEN -ENTRADA</u>

PRINCIPAL HOSPITAL REGIONAL BILWI"

Muestra 01 Procedencia 0+000 Ensayo S-001

Sondeo 01 profundidad 1 m fecha 08-06-20

COMPOSICIÓN GRANULOMÉTRICO DEL MATERIAL RETENIDO EN LA MALLA N. 4												
Malla Peso Retenido % Retenido % Retenido % que pasa Parcial (gr) parcial Acumulativo Malla												
1"	19.6	0.8	0.8	99.2								
3"/4"	79.4	3.24	4.04	95.96								
3"/8"	384.5	15.7	19.74	80.26								
No.4	787.6	32.18	51.92	48.7								
Pasa No.4	1,176.7	48.7	100									
Suma	2,447.8	100										

QUE PASA MALLA N. 4 (lavado)									
MALLA	PESO RETENIDO PARCIAL GR	%RETENIDO PARCIAL	% RETENIDO ACUMULATIVO	% QUE PASA LA MALLA					
10	30.4	2.9	2.9	45.16					
30									
40	65.9	6.34	9.24	38.82					
60									
100									
200	115.7	11.12	20.36	27.7					
Pasa N. 200(5)	288	27.7	48.6						
SUMA	500	48.6							

MATERIAL QUE PASA POR LA MALLA N. 200										
	peso seco	500								
	peso seco lavado	(2)	213.5							
PRUEBA	Pasa n. 200 lavado	(1)-(2)=(3)	286.5							
N. 1	Pasa n. 200 cribado	(4)	1.5							
	Total pasa N .200	(3)+(4)=(5)	288							

Estudiantes George Gutiérrez y Donald Vega

Proyecto <u>DISEÑO DE PAVIMENTO RIGIDO DEL TRAMO SUBURBANO "EL RETEN -ENTRADA PRINCIPAL HOSPITAL REGIONAL BILWI"</u>

Muestra 01 Procedencia 0+000 Ensayo S-001

Sondeo 01 profundidad 1 m fecha 08-06-20

Numero de golpe N.		11	23	31
Recipiente No.		M-2	J-3	J-2
Pw mas recipiente	(1)	41.76	39.98	42.03
Ps más recipiente	(2)	33.40	31.32	34.75
Agua	(1)-(2)=(3)	8.36	8.66	7.28
Ps más recipiente	(2)			
Recipiente	(4)	17.39	17.06	17.46
Ps	(2)+(4)=(5)	16.01	14.26	17.29
% de Agua		52.2	60.72	42.08
Factor		0.909	0.998	1.026
Limite liquido		47.44	60.11	43.17

Limite F	Plástico	Contracción Liñal		
Recipiente No.		G-2	T-10	
Pw mas recipiente	(8)	39.83	40.13	
Ps más recipiente	(9)	31.81	33.92	
Agua	(8)-(9)=(10)	8.02	6.21	
Ps más recipiente	(9)			RESULTADOS
Recipiente	(11)	17.00	17.00	L.L= 50.24
Ps	(9)-(11)=(12)	14.81	16.92	L.P= 45.42
Limite liquido	(6) x k (7)	54.15	36.70	I.P= 4.82

6.4.1 Resultado de del estudio geotécnico

Estación Km	Profundidad Metro	Muestra No	% que	e pasa po	oor el L.L		L.P	I.P	Clasificación	Notas	Valoración
			#4	#10	#40				H.R.B		
					SC	ONDEO N	o.1				
0+000	1	1	11	23	31	50.24	45.42	4.82	A-7-6	Suelo arcilloso	Regular a pobre
					S	ONDEO I	N2				
0+250	1	2	13	24	33	59.65	54.21	5.44	A-5	Suelo limoso	Regular a pobre
					SC	ONDEO N	o.3				
0+500	1	3	15	21	30	31.91	15.73	16.18	A-7-6	Suelo arcilloso	Regular a pobre
					SC	ONDEO N	o.4				
0+750	1	4	17	25	36	52.90	18.85	34.05	A-7-6	Suelo arcilloso	Regular a pobre
					SC	ONDEO N	o.5				
1+000	1	5	12	24	29	58.14	39.53	18.61	A-5	Suelo limoso	Regular a pobre
					SC	ONDEO N	0.6				
1+250	1	6	13	20	31	42.64	30.59	12.05	A-5	Suelo limoso	Regular a pobre
					SC	ONDEO N	o.7				
1+500	1	7	14	21	28	55.75	29.02	26.73	A-7-6	Suelo arcilloso	Regular a pobre
					SC	SONDEO No.8					
1+750	1	8	12	21	30	54.61	37.87	16.74	A-7-6	Suelo arcilloso	Regular a pobre
					SC	ONDEO N	o.9				
2+000	1	9	11	23	28	26.6	15.84	10.76	A-5	Suelo limoso	Regular a pobre

6.5 Estudio Hidrológico

Es la ciencia geográfica que se dedica al estudio de la distribución, espacial y

temporal, y las propiedades del agua presente en la atmósfera y en la corteza

terrestre. Esto incluye las precipitaciones, la escorrentía, la humedad del suelo, la

evapotranspiración y el equilibrio de las masas glaciares. En este sentido es

necesario que el Ingeniero Civil conciba el sistema hídrico como un ente

fundamental en los procesos relacionados con la construcción de obras civiles, y la

planificación y aprovechamiento de los recursos hídricos.

Periodo de retorno

El tiempo promedio, en años, en que el valor del caudal pico de una creciente

determinada es igualado o superado una vez cada "T" años, se le denomina Período de Retorno "T". Si se supone que los eventos anuales son

independientes, es posible calcular la probabilidad de falla para una vida útil

de n años.

Para adoptar el período de retorno a utilizar en el diseño de una obra, es

necesario considerar la relación existente entre la probabilidad de

excedencia de un evento, la vida útil de la estructura y el riesgo de falla

admisible, dependiendo este último, de factores económicos, sociales,

técnicos y otros.

El riesgo de falla admisible en función del período de retorno y vida útil de la

obra está dado por:

 $R = 1 - (1 - 1/T)^n$

T: período de retorno

R: riesgo de falla admisible

n: años

63

Dia	Temperatura ℃					Hum	T.vap	Preci	Evapo	oracion	B.sol	N.Baja		Vien	tos (m/s	eg)
	Max	Min	Me	Th	P.roc	edad	or	piţaci	Piche	Tanqu	ar	s Nh	Me	Max	Min	Runb
			d		io	Relati	mm	ón	ml	e mm	hrs/d		d			
04	07.0	05.0	00.4	05.0	05.0	va%	00.0	mm	0.0	0.0	С	-	0.0	-		-
01	27.3	25.8	26.1	25.9	25.8	83	22.2	1.3	3.3	6.8	3.2	5	3.6	5	2	E
02	28.1	25.2	27.5	26.3	25.9	75	21.3	1.1	2.4	5.2	4.5	4	3.4	7	1	N
03	27.8	24.9	25.2	25.0	24.9	87	23.7	0.0	5.7	6.4	4.2	6	4.8	6	2	E
04	29.3	24.5	27.9	25.7	25.2	80	25.1	0.0	4.2	8.4	3.1	4	3.9	5	1	S
05	27.5	22.2	25.5	24.3	23.6	75	20.5	1.4	6.8	5.1	09 5.3	3	2.8 4.7	5	1	SE
06	31.3	23.8	28.6	25.9	24.1	86	23.4	0.0	5.6	7.8		4		6	3	NE
07	29.8	25.4	27.7	26.5	25.9	82	20.7	2.8	4.6	3.4	8.1	2	2.3	4	1	E
80	29.1	26.4	28.2	27.9	27.2	81	22.3	3.2	5.3	5.9	7.3	7	2.9	6	1	S
09	30.5	25.8	28.1	27.2	26.9	90	23.1	0.0	4.5	8.5	9.2	5	1.8	5	1	N
10	28.9	23.7	26.8	25.3	24.8	88	21.5	0.9	5.5	9.2	9.8	5	3.1	6	2	NE
11	29,2	22.3	27.2	25.7	24.2	85	19.8	1.4	7.2	6.2	8.7	3	2.7	7	1	SE
12	30.9	24.6	28.3	26.2	25.7	82	20.3	0.0	4.7	7.3	5.8	6	5.7	9	4	N
13	31.1	24.5	27.9	26.8	26.2	75	19.2	0.0	5.9	7.4	6.9	6	2.5	5	1	E
14	28,7	22.1	25.0	24.2	23.6	79	19.8	5.9	4.2	6.1	3.4	4	5	8	4	S
15	29.5	24.3	26.9	26.1	25.5	80	20.7	7.8	4.1	8.7	8.8	5	2.9	5	1	S
16	28.9	23.5	25.8	24.5	24.1	79	21.1	0.8	6.1	6.1	9.2	5	2.8	6	1	S
17	30.1	24.6	27.1	26.7	26.0	81	22.6	0.0	6.6	8.4	9.7	6	3.8	7	2	E
18	30.4	24.9	28.0	27.1	26.5	84	23.4	20.8	6.7	6.3	10.6	6	6	9	5	E
19	29.1	26.1	27.3	27.1	26.5	84	25.1	34.8	5.8	5.5	8.8	6	4.2	7	3	E
20	29.9	26.5	27.0	26.8	26.7	76	22.6	9.1	3.4	6.8	9.4	3	2.9	5	1	E
21	28.8	25.1	26.9	26.4	25.8	78	20.4	0.0	2.1	7.2	10.6	5	4.2	7	3	NE
22	31.2	24.5	25.6	25.2	25.1	87	22.2	0.0	2.8	6.0	9.1	4	3.3	8	2	NE
23	29.3	25.9	28.2	27.8	26.9	73	23.3	7.1	4.5	6.7	6.6	4	5.4	9	4	SE
24	29.1	24.0	27.1	25.7	25.2	84	21.7	0.0	6.1	8	7.5	7	7	9	4	SR
25	30.5	24.2	28.0	26.6	25.4	82	20.6	1.8	5.2	5.8	9.7	5	4.1	8	3	E
26	30.0	25.0	26.8	26.5	26.1	92	18.9	0.0	6.8	4.9	8.1	3	3.4	5	2	N
27	30.1	25.4	28.8	27.0	26.3	86	22.7	0.0	4.3	5	9.4	3	7.3	9	5	0
28	27.1	22.2	25.2	24.9	23.8	87	25.3	0.5	4.9	7.3	7.2	7	4.7	8	3	0
29	29.0	23.1	26.7	25.1	24.6	84	23.9	0.0	3.5	5.4	9.8	5	2.9	5	1	OE
30	29.7	24.7	27.9	25.8	25.2	78	22.8	15.2	5.1	6	10.4	5	5.1	8	4	OE
Suma	824	735	758	782	763.7	2463	660	115.9	147.9	197.8	224.4	143	119	199	69	E
Media	27	24	25	26	25	82.1	22	3	4.	6	7	4	3	6	2	E
Max	31.3	26.5	28.8	27.9	27.2	92	25.3	34.8	7.2	9.2	10.6	7	7.3	9	5	E
Min	27.1	22.1	25	24.2	23.6	73	18.9	0	2.1	3.4	3.1	2	1.8	4	1	E

6.6 Criterios de diseño

En los procedimientos de diseño, la estructura de un pavimento es considerada como un sistema de capas múltiples y los materiales de cada una de las capas se caracterizan por su propio Módulo de Elasticidad.

La evaluación de tránsito está dada por la repetición de una carga en un eje simple equivalente de 80 kN (18,000 lb.) aplicada al pavimento en un conjunto de dos juegos de llantas dobles.

Para propósitos de análisis estas dobles llantas equivalen a dos platos circulares con un radio de 115 mm o 4.52" espaciados 345 mm o 13.57" centro a centro, correspondiéndole 80 kN o 18,000 lb. de carga al eje y 483 kPa o 70 PSI de presión de contacto sobre la superficie.

Este procedimiento puede ser usado para el diseño de pavimentos compuestos de varias combinaciones de superficies y base. La sub rasante que es la capa más baja de la estructura de pavimento, se asume infinita en el sentido vertical y horizontal; las otras capas de espesor finito son asumidas finitas en dirección horizontal. En la superficie de contacto entre las capas se asume que existe una completa continuidad o adherencia.

En el caso de suelos estabilizados, las características mecánicas de los materiales cambian sustancialmente con la aplicación de productos estabilizadores, ya que el módulo de resiliencia se incrementa en valores apreciables. Es necesario, que, al utilizar productos estabilizadores de suelos, se efectúen los correspondientes estudios de laboratorio, para determinar los límites adecuados de las cantidades o porcentajes hasta los cuales puede llegar su uso.

Cuando se utiliza cemento como material estabilizador, es conveniente saber la cantidad máxima a utilizar, en función de los cambios físicos que experimentan los suelos, ya que una cantidad alta de cemento, hace que los materiales obtengan valores altos de resistencia mecánica, pero también contracciones fuertes que se

traducen en agrietamientos, nada deseables para la estructura de pavimento, por el hecho de que estas grietas se reflejarán posteriormente en la superficie de rodadura.

6.6.1 Método de Diseño: AASTHO

El diseño geométrico de la ruta es un proceso en el que se combinara el análisis de los resultados del procesamiento de toda la información de campo recabada en las diferentes especialidades tales como, los trabajos topográficos, los estudios geodésicos y los trabajos de tráfico.

Determinación del Tipo de tránsito, (el tipo de transito se determinará de acuerdo a los datos recopilados del conteo vehicular).

Determinación de la Carga máxima por rueda, (la carga máxima por rueda se determinará de acuerdo a los datos recopilados del conteo vehicular).

Determinación de la Intensidad de Iluvia anual en la Ciudad de Bilwi, (la intensidad de Iluvia anual se determinará a través de la visita al sitio del centro meteorológico de la Ciudad de Bilwi).

Determinación del Incremento por la pluviosidad, (se determinará de acuerdo a los datos recopilados en el centro meteorológico).

Determinación de CBR de Diseño, (se determinará a través del ensayo de la muestra del suelo en laboratorio).

Tabla 2: Altura del Ojo del Conductor de un Automóvil y del Objeto visual.

Altura del ojo del conductor de un Automóvil y del objeto visual						
control	Altura (m)					
Distancia de visibilidad	1.07	1.3				
De Adelantamiento						
Distancia de visibilidad de parada	1.07	0.15				
Curva Horizontales						
visibilidad de adelantamiento	1.07	1.1				
visibilidad de parada	1.07	1.15				

Fuente: AASHTO. A Policy on Geometric Design of Highways and streets 1994 pp 136-B

	Rebasado	Rebasado	(m)
30	29	44	220
		 11	120
40	36	51	285
50	44	59	345
60	51	66	410
70	59	74	480
80	65	80	540
90	73	88	605
100	79	94	670
110	85	100	730

Fuente: AASHTO. A Policy on Geometric Design of Highways and streets 1994 pp 136

6.6.2 DISEÑO GEOMÉTRICO DEL CAMINO

El Diseño Geométrico Vial es la instancia del Proyecto que tiene la responsabilidad de coordinar las diferentes acciones y aspectos de carácter técnico que conllevan a la realización del Proyecto en la fase de Estudio y Diseño; esto además tener la responsabilidad de establecer y definir la geometría Plan altimétrica en la proyección de lo que será la nueva vía construida.

6.6.3 DEFINICION DE LOS CRITERIOS DE DISEÑO

Los criterios técnicos para la realización del Estudio y Diseño Geométrico Vial se defino y estableció a partir de que se cuenta con los elementos e insumos básicos que inciden en la realización de dicho diseño; estos corresponden a los siguientes;

- Resultados de los estudios topográficos, materializados en los planos topográficos conteniendo la configuración Planimétrico topográfica del terreno que corresponde a la franja del corredor del Proyecto, a través de lo cual conocemos tanto la planimetría como la altimetría.
- ➤ La Sección Transversal Típica del Proyecto, de la cual a partir del dimensionamiento que demanda su aplicación, nos permitirá tener una visión general de los resultados que se obtendrán del movimiento de tierra, afectaciones al derecho de vía, remoción de postes del tendido eléctrico entre otros.
- ➤ El Vehículo de Diseño, lo cual nos permitió la verificación del dimensionamiento de la sección típica del Proyecto.
- Los objetivos y fines específicos del Proyecto, lo cual conlleva a orientar los diseños para que cumpla sus funciones como tal.
- Lineamientos y directrices establecidos por la instancia inversionista para la realización del Proyecto en la fase de estudio y diseño, y que corresponden

a los Términos de Referencia del Proyecto, lo que permitió desarrollar los estudios y diseño de conformidad a los requerimientos de El Dueño.

A partir de lo anteriormente expuesto, se establecieron los criterios técnicos para la realización del Estudio y Diseño Geométrico Vial, los cuales se aplicaron con los objetivos de alcanzar los mejores resultados y más óptimos dentro del marco de la seguridad y las posibilidades de que se lleve a cabo su ejecución en el aspecto constructivo

6.6.4 VEHICULO DE DISEÑO

Las características de los vehículos de diseño condicionan los distintos aspectos del dimensionamiento geométrico y estructural de una carretera, por ejemplo:

- > El ancho del vehículo adoptado incide en el ancho del carril, los hombros.
- La distancia entre los ejes del vehículo influye en el ancho y los radios mínimos internos y externos de los carriles.
- Las características de los vehículos, además de condicionar los aspectos referidos en la norma a través del peso bruto admisible conjugado con la configuración de los ejes; influyen en las dimensiones del pavimento.
- Al seleccionar el vehículo de diseño se debe tomar en cuenta la composición del tráfico que utiliza y utilizará la vía. Habitualmente, hay una participación suficiente de vehículos pesados para condicionar las características del proyecto. Sobre esta base y tomando en cuenta las recomendaciones del Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras Regionales.

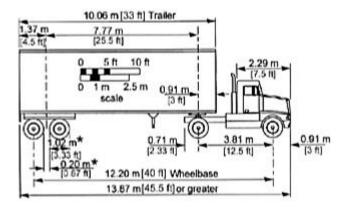


Figura 1: Vehículo de diseño

 Typical tire size and space between tires applies to all trailers.

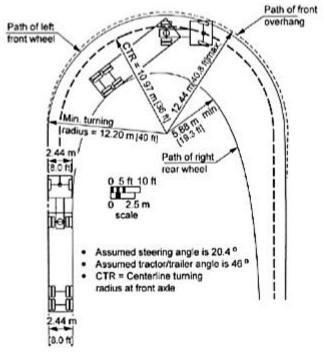


Figura 2: vehículo de Diseño

El manual de la SIECA de manera textual establece lo siguiente.

"La carencia de datos dificulta la escogencia de los vehículos de diseño, que son los vehículos automotores predominantes y de mayores exigencias en el tránsito que se desplaza por las carreteras regionales, por lo que, al tipificar las dimensiones, pesos y características de operación de cada uno de ellos, se brinda al diseñador los controles y elementos a los que se deben ajustar los diseños para posibilitar y facilitar su circulación irrestricta.

Sin embargo, ciertos datos de tránsito y los registros nacionales de vehículos automotores, destacan en Centroamérica la presencia relativamente importante del camión tipo T3, que corresponde a un camión de tres ejes, uno delantero y dos ejes en tándem atrás, utilizado con preferencia para el acarreo de mercancías a distancias cortas y medianas. En términos de carga transportada por las carreteras regionales, su participación es, sin embargo, restringida, por consiguiente, menos significativa que la aportada por la combinación vehicular identificada como T3-S2,

que consiste en la integración operativa de una unidad de tracción o cabezal de tres ejes, acoplado con un semirremolque de dos ejes en tándem."

De este análisis es necesario no perder de vista la presencia de los tipos de vehículos camión C-2 y el tipo Bus; que son los vehículos de transporte de carga y pasajeros además de la posibilidad que en un determinado momento deberá circular el camión tipo T3-S2, en reducidas ocasiones; por lo tanto, se consideró utilizar como vehículo de Proyecto los Tipos C-2, C-3 y/o el Bus, a manera de vehículos intermedios entre las camionetas y el tipo T3-S2

6.6.5 JUSTIFICACION DE LOS PARAMETROS DE DISEÑO

Velocidad de Diseño.

La definición y establecimiento de la velocidad de diseño para un valor de 30 kilómetros por hora (KPH), obedeció principalmente a los siguientes criterios técnicos.

Las características topográficas planimetrías del corredor de la vía en toda su trayectoria no permite establecer velocidades de Diseño que superen los 30 KPH; de acuerdo a las características del Proyecto, conforme a los Reglamentos del Sistema Vial, del Plan Regulador de la División General de Urbanismo de la Alcaldía de Managua una velocidad de diseño de 30 KPH según dicho manual, es la que más se ajusta para ser aplicada al Proyecto, en la categoría de Sistema de Calles. Se toma como referencia el Manual Vial de Managua dado que la Alcaldía de Bilwi no tiene uno propio.

Una Velocidad de Diseño de 30 KPH, con una Sobreelevación máxima de 4% y un coeficiente de fricción transversal de 0.17; implica la aplicación de un radio de curvatura mínimo de 40.00 m, con longitudes de transición que se ajustarán a partir de establecer la pendiente relativa que corresponda, con lo cual se acomodarán al trazo del camino existente; para valores mayores de estos parámetros (Velocidad, Radio de curvatura, etc.

- ➤ De acuerdo a las mismas características topográficas del terreno, y conforme la velocidad de diseño seleccionada las distancias de visibilidad de rebase o adelantamiento es 220m que las Normas de Diseño Geométrico (SIECA), establece para velocidades de diseño de 30 KPH, correspondientes a las clasificaciones del tipo Sistema de Calles.
- ➤ De manera similar a lo anterior, para la distancia de visibilidad de parada, y para la velocidad seleccionada, se establecen distancias de; 30m respectivamente.

Velocidad promedio de	50 -65	66 – 80	81 – 95	96 – 110
Adelantamiento (km/h)	56.2	70.0	84.5	99.8
Maniobra inicial				
A= aceleración promedio (km/h/s)	2.25	2.30	2.37	2.41
tl = tiempos (s)	3.6	4.0	4.3	4.5
d1 = distancia recorrida (m)	45	65	90	110
Ocupación carril izquierdo:				
t2= tiempos (s)	9.3	10.0	10.7	11.3
d2 = distancia recorrida (m)	145	195	250	315
Longitud libre	30	55	75	90
d3 = distancia recorrida (m)				
Velocidad que se aproxima:	95	130	165	210
d4 = distancia recorrida (m)				
Distancia total: d1+ t2+ d3+ d4, (m)	315	445	580	725

Tabla 4: Parametros Basicos.

Derecho de Vía.

Para un sistema de calles, la norma recomienda disponer de un derecho de vía de 14 metros mínimo. Tomando en cuenta los problemas que afectan la región y los problemas sociales que generan las afectaciones a la propiedad privada; se recomienda mantener el derecho de vía existente, a excepción de aquellos sitios donde se proyecten cortes y/o rellenos donde se excedan los límites del derecho de vía.

En estos casos se establecerá el derecho de vía al pie del talud. Bajo esta óptica se debe coordinar con el Especialista Social que durante las visitas de campo a realizar en el proyecto proponga estas soluciones a los posibles afectados a fin de no sacrificar el diseño y evitar optar por soluciones de dimensiones restringidas.

Número de Carriles: Para proveer a la vía de una circulación vehicular en ambos sentidos, el número de carriles a utilizar será de 2.

Carga de Diseño: El diseño de carga vehicular según la AASHTO 94 es la HS20-44+25%, normativa internacional para el diseño de estructuras y vías. Normativa adoptada por el MTI; para el diseño estructural del drenaje mayor.

Ancho de carril: En vista que el vehículo tipo a utilizar es un WB-12, las normas AASHTO indican que los vehículos de carga y pasajeros tienen un ancho máximo para diseño de 2.60m. Dado que es necesario introducir un ancho de reserva para permitir que conveniente y ligeramente los vehículos se separen del borde de la calzada se está proponiendo un ancho de 3.50 metros; que se justifican por la velocidad de diseño seleccionada y las restricciones del derecho de vía.

Ancho de rodamiento: El ancho total de rodamiento de la vía es de 7.00 m. para un ancho de 3.50 m. por carril.

Ancho de andenes: La vía a proyectar para su construcción deberá contar con los elementos de infraestructura complementarios básicos que demanda el usuario, y que de forma general corresponden a; andenes peatonales, accesos fáciles a otras vías, etc. Atendiendo a estas recomendaciones se dotará la vía con la construcción de andenes de concreto de 1.05 de ancho. Aunque las normas mínimas de diseño geométrico del plan regulador recomiendan la utilización de andenes con un ancho mínimo entre 1.50m a 1.75m; se emplearán como se mencionó anteriormente andenes de 1.05m para evitar mayores afectaciones al derecho de vía.

Distancia entre ejes: De acuerdo al vehículo tipo seleccionado la distancia entre ejes del mismo es de 12.20m. En cuadro adjunto se muestran características del vehículo de diseño seleccionado.

Metric

Design Vehiclo Typo	Pas- Senger car	Single - Unit Truck	Intecity B (Motor Co		City Transit Bus	Conventi onal School Bus (65 Pass)	Lorgo ² School Bus (84 Pass)	Articu- Lated Bus	Intermed- iato semi trailer	Intermed- iato semi trailer
Symbol	P	SU	BUS-12	BUS-14	CITY-BUS	S-BUS11	S-BUS12	A-BUS	WB-12	WB-15
Minimum Design Turning Radius (m)	7.3	12.8	13.7	13.7	12.8	11.9	12.0	12.1	12.2	13.7
Center Line Turning Radius (CTR)(m)	6.4	11.6	12.4	12.4	11.5	10.6	10.8	10.8	11.0	2.5
Minimum Inside Radius (m)	4.4	8.6	8.4	7.8	7.5	7.3	7.7	6.5	5.9	5.2

Tabla 5: Dimensiones de los Vehículos de Diseño.

6.6.6 DRENAJE

El drenaje en general del Proyecto en toda su trayectoria está constituido por

estructuras de drenaje del tipo Alcantarillas de tubo de concreto armado (TCR). La

situación de cada una de las clasificaciones de las estructuras de drenaje

corresponde a lo siguiente.

Drenaje: Aplicado al diseño de curvas verticales en cresta o en columpio cuando

estas se encontraban ubicadas en corte a fin la necesidad de modificar las

pendientes longitudinales de las cunetas.

Cunetas

En todo el recorrido del Proyecto no se observan cunetas, tanto naturales como

revestidas de suelo-cemento o mampostería; es importante hacer notar que en los

procesos de mantenimiento no se forjan las cunetas para la captación del agua de

escorrentía de la superficie de rodado.

El diseño contempla la construcción de cuneta urbana de 3,000 PSI.

Coeficiente de Fricción Transversal (40 K.H.P)

El factor de fricción lateral depende principalmente de las condiciones de los

neumáticos de los vehículos, del tipo y estado de la superficie de rodamiento y de

la velocidad del vehículo. Para elegir el máximo factor de fricción lateral

recomendado para el diseño debemos fijar su control en la falta de comodidad que

percibe el conductor cuando recorre una curva a una velocidad determinada. La

AASHTO ha adoptado un coeficiente que ofrece un buen margen de seguridad y su

variación obedece a una función lineal en función de la velocidad de diseño:

f+0.000626V-0.19=0

Donde:

f: coeficiente de fricción lateral V: velocidad en kilómetros por hora.

Para el proyecto que nos ocupa el coeficiente de fricción a utilizar es de 0.17.

76

Radio de Curvatura Mínimo

Los radios de curvatura mínimos son los valores límites de la curvatura para la velocidad de diseño adoptada y está relacionada con la sobreelevación máxima y la máxima fricción lateral seleccionada para el diseño. Utilizando los valores de fricción lateral recomendados y la supe relevación máxima en función de la velocidad de diseño los radios mínimos de curvatura horizontal pueden calcularse utilizando la fórmula descrita a continuación:

$$R = \frac{v^2}{127(e+f)}$$

Donde:

R= Radio mimimo de curva, en metros.

e=Tasa de sobre elevacion enfraccion decimal.

F= Factor de friccion lateral, que es la fuerza de friccion dividida por la masa perpendicular al pavimento

V= Velocidad de diseño, en kilometro.

Pendiente Transversal

Con el propósito de evacuar eficientemente las aguas superficiales, las calzadas deben tener una inclinación transversal mínima o bombeo, que depende del tipo de superficie de rodadura y de los niveles de precipitación de la zona. Para el proyecto se propone la utilización del 3% para el bombeo.

Pendiente Longitudinal Mínima

Es necesario proveer una pendiente longitudinal del orden 0.50% a fin de asegurar en todo punto de la calzada un eficiente drenaje de las aguas superficiales.

Pendiente Longitudinal Máxima

La escogencia de las pendientes longitudinales máximas a emplear en carreteras tiene un significativo dominio sobre la velocidad de operación de la gran mayoría de los automóviles. Tomando en cuenta estas consideraciones de la Normas Mínimas

de Diseño Geométrico, del Plan Regulador recomiendan la utilización de las pendientes máximas y mínimas.

Sub elevación Máxima

Al momento en que un vehículo circula en una curva cerrada y con determinada velocidad se hace necesaria la existencia de una sobreelevación o peralte que le permita contrarrestar la fuerza centrífuga y el efecto desfavorable que se produce entre las llantas y el pavimento.

Debido a que las condiciones topográficas de la zona de emplazamiento de la vía imponen condiciones particulares en el diseño, y que el tratamiento que se le dará a la vía es un sistema de calles, se adoptará el bombeo en todo su recorrido.

Grado Máximo de Curvatura (D)

El grado máximo de curvatura, tiene estricta relación con el radio mínimo y la máxima fricción lateral escogida para el diseño. El grado de curvatura se calcula en función de la fórmula siguiente para arcos de 20 m.

$$D_{2Q} = \frac{1145Q^2}{R}$$

Longitud Mínima de Curva Vertical

Las curvas verticales se proyectan para que en su longitud se efectúe el paso gradual de la pendiente de la tangente de entrada a la de la tangente de la salida. Su uso da por resultado una vía de operación segura y confortable, apariencia agradable y con características de drenaje adecuadas.

Dadas las características restrictivas del proyecto sea usado como criterio de diseño la distancia de visibilidad de parada. Dada las condiciones topográficas del proyecto se ha fijado como longitud minina de curva vertical en 20m.

Controles de Diseño de Curvas Verticales en Columpio basados en la Distancia de Visibilidad de Parada, DVP

Velocidad de diseño	Rango de velocidad de marcha Km/h	Coeficiente de fricción	Valores DVP (m)		Factor K de
Km/h	de marcha ranzn	de mocion	Menores	Mayores	diseño *
30	30-30	0.40	30	30	4-4
40	40-40	0.38	45	45	8-8
50	47-50	0.35	60	65	11-12
60	55-60	0.33	75	85	15-18
70	63-70	0.31	95	110	20-25
80	70-80	0.30	115	140	25-32
90	77-90	0.30	130	170	30-40
100	85-100	0.29	160	205	37-51
110	91-110	0.28	180	245	43-62

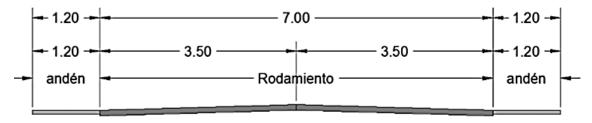

^{*} Cifras redondeadas

Tabla 6: Control de Curvas Verticales

Nº	DESCRIPCIÓN / PARAMETRO.	FORMA	UNIDAD.	VALORES.
01	Clasificación Funcional.		Sistema de	Calles.
02	Ancho del Derecho de Vía.	ADV	mt.	14.00
03	Velocidad de Diseño.	V _D	KPH	30.00
04	Velocidad de Ruedo.	V_R	KPH	30.00
05	Vehículo de Proyecto.	Veh.	Tipo.	WB-12
06	Radio de Curvatura Mínimo.	R _m	mt.	40.00
07	Grado de Curvatura Máximo.	Gc	G. Min. Seg.	32°44'
80	Número de Carriles de Rodamiento.	Nc	Unid.	2.00
09	Ancho Carril de Rodamiento.	Ac	mt.	3.05
10	Ancho Total de Rodamiento.	AR	mt.	6.10
11	Pendiente Transversal.(Bombeo)	В	%	3.00
12	Pendiente Longitudinal Máxima.	Pend%	%	12.00
13	Distancia entre P frontal y eje trasero (L)	L_{ee}	mt.	12.20
14	Coeficiente de Fricción Lateral.	f ₁	S/U	0.17
15	Longitud Mínima de Curva Vertical.	CV _{min}	mt.	20.00
16	Distancia de Visibilidad de Parada (min)	DVP	mt.	30.00(*)
17	Distancia de Visibilidad de Rebase.	DVR	mt.	220.00(*)
18	Distancia de Visibilidad Curv. Horiz.	DVCH	mt.	**

Tabla 7: Normas De Diseño

Grafico 3: Sección Típica de Diseño

Sección Típica.

El sistema vial del proyecto está integrado por los siguientes elementos:

- > 2 carriles de circulación de 3.50 metros de ancho.
- Cuneta urbana. (ver esquema).
- > Andenes peatonales de 1.20 metros de ancho.

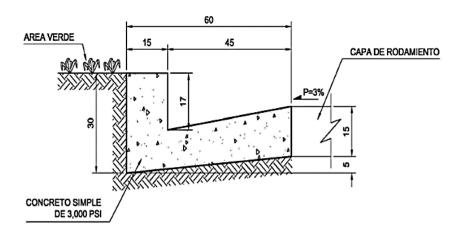


Figura 3: Seccion Tipica

6.7 Descripción General

El diseño Planimétrico del Proyecto fue realizado por la necesidad de la región a partir de la información topográfica suministrada por la universidad URACCAN conteniendo la información Plani - altimétrica del corredor de la vía existente, así como los detalles de infraestructura existente tales como: cercas delimitadoras del derecho de vía, obras de drenaje menor y mayor, viviendas, muros, postes del tendido eléctrico y telefónico, accesos-intersecciones con otras vías o caminos, etc.

El trazo de la vía se inicia en el extremo en tierra de puerto cabeza en el sector de reten, existente en el Poblado de Bilwi, la sección típica está conformada por una vía de dos carriles de 3.50 metros de ancho, sin hombros, pendiente transversal del 3% para lograr una mejor y rápida evacuación de las aguas superficiales y cunetas 6urbana.

De los Estudios Hidrotécnicos se logró obtener toda la información correspondiente a las capacidades requeridas de las secciones hidráulicas para satisfacer las necesidades del flujo de agua que cruza en dicho sitio, que traducido en obras constructivas corresponde a la definición de las estructuras requerida en este sitio. Esta estructura de drenaje proyectada significó un punto obligado durante el proceso de la proyección de la rasante.

Los Resultados que se obtuvieron del diseño de la estructura de pavimento definieron como parámetro principal, las alturas que debería tomar la dirección de la línea de rasante en los diferentes sectores de la vía en función de las características de la estratigrafía del subsuelo existente en cada uno de los tramos de camino que conforman el Proyecto, que de manera general estos valores se consideraron permanente en la mayoría de las situaciones del camino.

Para la realización de la proyección y diseño de la geometría planimetríco de la vía en estudio, fue necesario, además de contar con las Normas de diseño previamente establecidas, definir y establecer los siguientes criterios técnicos y consideraciones al respecto.

- Apegarse a lo establecido conforme los parámetros técnicos de diseño de las Normas de Diseño establecidas y aprobadas por el MTI.
- ➤ Evitar en todo lo posible se produzcan afectaciones a las propiedades aledañas a la vía, tanto en infraestructura como en propiedades de terrenos.
- Proyectar el alineamiento planimétrico logrando obtener una estética agradable que se conjugue con el aspecto paisajístico del entorno.
- La alineación se realizará tan directa como sea posible, pero debe estar de acuerdo con la topografía.
- La alineación de la planimetría se realizará de forma Consistente en todos sus aspectos.

El alineamiento vertical o perfil longitudinal, está formado por la rasante constituida por una serie de rectas enlazadas por arcos verticales parabólicos, a los cuales dichas rectas son tangentes.

Para fines del proyecto, el sentido de las pendientes se ha definido según el avance del kilometraje, siendo positivas aquellas que implican un aumento de cotas y negativas las que producen una disminución de las mismas. Las pendientes se han limitado a un valor máximo del 12% para que la carretera proporcione mayor comodidad al usuario. La pendiente máxima que alcanza el proyecto que nos ocupa es del orden de 5.11%.

El sistema de cotas se encuentra referido al nivel medio del mar, para lo cual se han enlazado los puntos de referencia del estudio con los BM's geodésicos establecidos para el proyecto.

DISEÑO ALTIMETRICO DEL PROYECTO

Para el diseño de estructuras de pavimento Rígido, se procedió a elaborar el Diseño aplicando de los siguientes procedimientos mediante el método de diseño AASHTO.

Los criterios se basaron en información resultante de estudios realizados por otras especialidades participantes en el proyecto y por la consulta de las normas establecidas en el Manual Centroamericano de Normas para el Diseño Geométrico de las Carreteras Regionales y que para abreviar se llamará el Manual de Diseño en este documento.

SEÑALIZACION VIAL

El buen funcionamiento de una carretera implica el señalamiento necesario que le suministre seguridad al usuario de la misma; es decir que se considera la señalización como el elemento complementario para la Buena Operación de la Vía; por lo cual esta parte del documento estará orientado de manera específica a la Formación de las señalizaciones como prioridad dentro de la Fase de Estudios de Ingeniería y Diseño de una Vía Nueva o a ser Rehabilitada y Mejorada. Se contempla la Reglamentación del Uso de los diferentes aspectos de la señalización que ya existen a nivel mundial y son ampliamente conocidas en nuestro país; Informativas, Preventivas y Restrictivas; conforme a estudio, verificación y revisión que se efectuará a lo Establecido en el Manual de la SIECA.

El aspecto de la Señalización Vial en el Marco de la Ingeniería de caminos, carreteras y calles a nivel mundial se encuentra ampliamente desarrollado y establecido; su desarrollo se ha venido produciendo a partir de una cadena de transferencia cíclicas que generalmente han conllevado a procesos de retroalimentación de los sistemas establecidos originalmente a través de mejoramiento de los mecanismos de implementación que se impulsan con seguimientos sistemáticos que al final de cierto período los resultados implican una mejoría en lo establecido inicialmente.

Para el caso de nuestro país, no se tratará de implementar diferentes tipos de señalización a los que ya han sido establecidos a nivel mundial y se encuentran en operación ampliamente verificados; se pretende reglamentar el uso y aplicación de los sistemas de señalización de manera estandarizada y uniforme en todo el territorio nacional a partir de una instancia única rectora de la Red Vial Nacional y que en este caso le corresponde al Ministerio de Transporte e Infraestructura (MTI).

Tomando en cuenta lo anteriormente expresado, la presente memoria descriptiva de la señalización vial de Bilwi, se realiza con el objeto de dar a conocer los criterios técnicos que utilizaron para diseñar los dispositivos de tránsito que componen la señalización vial de esta vía, y lograr la seguridad vial a los usuarios con las señales y marcas de tránsito funcionales.

La señalización vial tiene la función de establecer la regulación de la circulación conforme la Ley 431, Para el Régimen de circulación e infracciones de tránsito, también previenen de los peligros y su naturaleza para que los usuarios ajusten su manejo a las condiciones de peligro, y brindan la información necesaria, el diseño ha considerado la infraestructura vial a construirse y el entorno para que la señalización responda realmente a guiar o dirigir el transito correctamente.

Señalización Horizontal

La señalización horizontal la componen todas las marcas, líneas, símbolos, números y letras pintadas sobre la superficie de rodamiento, con el objetivo dirigir correctamente la circulación indicando los espacios de circulación y los movimientos permitidos, auxilian a las señales verticales manteniendo a los peatones y conductores en sus correspondientes espacios para circular.

En la calle de Bilwi se consideró una velocidad de diseño de 30 kph y una calzada de 7.00 m de ancho, para permitir doble sentido de circulación, conforme los planos solamente se dispone de un tramo donde hay espacio para adelantar de 200 m para ambos sentidos, manteniendo la línea continua central en todo el tramo, estas líneas discontinuas a los lados que permiten adelantamiento pueden ser suprimidas si hay

vías públicas adyacentes donde se van a marcar, igualmente si hubiese viviendas y se valora como zona poblada.

- La línea central continua será de color amarillo con un ancho de 10 cm.
- ➤ La carretera está restringida para adelantar por curvas horizontales con radios de 40 m, cruce de zona escolar y del puente. La línea continua central solo será cortada para accesos públicos.
- ➤ La Línea Discontinua a los lados de la central se marcará de 4.5 m pintada y 7.5 m sin pintar, de 10 cm de ancho y color amarillo.

Velocidad	Factor	Pei	ralte máximo 4%		Pei	ralte máximo 6%	
de diseño	de	Ra	dio (m)	Grado	Radio (m)		Grado
(km/h)	Fricción			de			de
	Máximo	Calculado	Recomendado	Curva	Calculado	Recomendado	Curva
30	0.17	33.7	35	32°44"	30.8	30	38°12"
40	0.17	60.0	60	19°06"	54.8	55	20°50"
50	0.16	98.4	100	11°28"	89.5	90	12°44"
60	0.15	149.2	150	7°24"	135.0	135	8°29"
70	0.14	214.3	215	5°28"	192.9	195	5°53"
80	0.14	280.0	280	4°05"	252.0	250	4°35"
90	0.13	375.2	375	3°04"	335.7	335	3°25"
100	0.12	492.1	490	2°20"	437.4	435	2°38"
110	0.11	635.2	635	1°48"	560.4	560	2°03"
120	0.09	872.2	870	1°19"	755.9	775	1°29"

Velocidad	Factor	Pe	ralte máximo 8%		Pe	ralte máximo 10%	6
de diseño	de	Ra	dio (m)	Grado	Ra	dio (m)	Grado
(km/h)	Fricción			de			de
	Máximo	Calculado	Recomendado	Curva	Calculado	Recomendado	Curva
30	0.17	28.3	30	38°12"	26.2	25	45°50"
40	0.17	50.4	50	22°55"	46.7	45	25°28"
50	0.16	82.0	80	14°19"	75.7	75	15°17"
60	0.15	123.2	120	9°33"	113.4	115	9°58"
70	0.14	175.4	175	6°33"	160.8	160	7°10"
80	0.14	229.1	230	4°59"	210.0	210	5°25"
90	0.13	303.7	305	3°46"	277.3	275	4°10"
100	0.12	393.7	395	2°54"	357.9	360	3°11"
110	0.11	501.5	500	2°17"	453.7	455	2°31"
120	0.09	667.0	665	1°43"	596.8	595	1°56"

Fuente: AASHTO. A Policy on Geometric Design of Highways and streets 1994 pp 156

Tabla 8: Radios mínimos y grados máximos de curvas horizontales para distintas velocidades de diseño.

Controles de Diseño de Curvas Verticales en Cresta basados en las Distancias de Visibilidad de Parada y de Adelantamiento

Velocidad de Diseño	Velocidad de marcha	Distancia de parada para	Tasa de curvatura vertical K, long (m)	Distancia minima de adelantam.	Tasa de curvatura vertical, K, long
Km/h	Km/h	diseño (m)	por % de G*	para Diseño (m)*	(m) por % de G*
30	30-30	30-30	3-3	217	50
40	40-40	45-45	5-5	285	90
50	47-50	60-65	9-10	345	130
60	55-60	75-85	14-18	407	180
70	67-70	95-110	22-31	482	250
80	70-80	115-140	32-49	541	310
90	77-90	130-170	43-71	605	390
100	85-100	160-205	62-105	670	480
110	91-110	180-245	80-151	728	570

^{*} Valores redondeados

Tabla 9: Control de Diseño de Curvas verticales en Cresta Basado en las Distancias de Visibilidad de Pardas y de Adelantamiento.

SEÑALIZACION VERTICAL

Las señales verticales tienen la función de transmitir el mensaje de tránsito por medio de símbolos, palabras y números, sus tamaños, formas y colores están definidos por convenio interamericano para que sean interpretadas por todos los peatones y conductores, estos mensajes están descritos en tableros que se colocan sobre postes metálicos, para que queden en ángulo de visibilidad aceptable

DISTANCIA DE VISIVILIDAD DE PARADA

a) En Terreno Plano

			_			Distancia
Velocidad	Velocidad	Tiempo de	Percepción	Coeficiente	Distancia	de Parada
de Diseño	de Marcha	y Rea	cción	de Fricción	de Frenado	para
Km/h	Km/h	Tiempo (s)	Distancia (m	f	(m)	(m)
30	30 - 30	2.5	20.8 - 20.8	0.40	8.8 - 8.8	30 - 30
40	40 - 40	2.5	27.8 - 27.8	0.38	16.6 - 16.6	45 - 45
50	47 - 50	2.5	32.6 - 34.7	0.35	24.8 - 28.1	57 - 63
60	55 - 60	2.5	38.2 - 41.7	0.33	36.1 - 42.9	74 - 85
70	67 - 70	2.5	43.8 - 48.6	0.31	50.4 - 62.2	94 - 111
80	70 - 80	2.5	48.6 - 55.6	0.30	64.2 - 83.9	113 - 139
90	77 - 90	2.5	53.5 - 62.4	0.30	77.7 - 106.2	131 - 169
100	85 - 100	2.5	59.0 - 69.4	0.29	98.0 - 135.6	157 - 205
110	91 - 110	2.5	63.2 - 76.4	0.28	116.3 - 170.0	180 - 246

Tablas 10: Distancia de Visibilidad de Parada.

b) En Pendiente de Bajada y Subida

Velocidad	Distancia	Distancia de Parada en Bajadas			de Parada e	n Subidas
de Diseño		(m)			(m)	
Km/h	3%	6%	9%	3%	6%	9%
30	30.4	31.2	32.2	29.0	28.5	28.0
40	45.7	47.5	49.5	43.2	42.1	41.2
50	65.5	68.6	72.6	55.5	53.8	52.4
60	88.9	94.2	100.8	71.3	68.7	66.6
70	117.5	125.8	136.3	89.7	85.9	82.8
80	148.8	160.5	175.5	107.1	102.2	98.1
90	180.6	195.4	214.4	124.2	118.8	113.4
100	220.8	240.6	256.9	147.9	140.3	133.9
110	267.0	292.9	327.1	168.4	159.1	151.3

Tabla 11: Pendiente de Bajada y Subida.

c) Decision para Evitar Maniobras

Velocidad de Diseño	Distancia de Decision para Evitar la Maniobra (m)						
Km/h	a	b	С	d	е		
50	75	160	145	160	200		
60	95	205	175	205	235		
70	125	250	200	240	275		
80	155	300	230	275	315		
90	185	360	275	320	360		
100	225	415	315	365	405		
110	265	455	335	390	435		

Fuente: A Policy on Geometric Design of Highways and Streets, 1994, pp 120,125 y 127

Tabla 12: Decisión para Evitar Maniobras.

RESULTADOS DE METODO DE PCA

Se determinó que el método propuesto por la PCA (Portland Cement Association) era el más conveniente a ser aplicado, esto considerando los estudios realizados por esta asociación en tramos a escala real de este tipo de pavimento rígido como es el CCR. Además, la PCA, ha propuesto una guía para pavimentos compactados con rodillo la cual contiene información muy incidente al momento de implementar la metodología de diseño.

Definidas nuestras directrices de diseño era de suma importancia obtener información de campo objetiva para la obtención de nuestras variables de diseño como es el valor de la sub rasante

Iniciando la etapa se realizó la proyección del Tráfico Promedio Diario Anual, luego se calculó las repeticiones esperadas hasta el año de diseño y consiguiente se hizo la descomposición de ejes vehiculares.

Como segunda etapa se tendrá que procesar la información de CBR que mediante el método de diferencias acumuladas determinaremos secciones homogéneas y por ende los CBR más críticos en los tramos más significativos. Teniendo los CBR a ser considerado obtendremos los módulos de la sub rasante del suelo (valor k) mediante tablas de correlaciones y así mismos los k compuesto.

Luego, se tomaron las consideraciones y criterios necesarios para definir los valores de las propiedades ingenieriles de un pavimento de concreto compactado con rodillo. En este punto se requirió un proceso investigativo para entender, según bibliografía disponible, el comportamiento de dicho pavimento.

6.8 PCA cálculo

DISEÑO PARA PAVIMENTO RÍGIDO METODOLOGÍA PCA-84

Fecha 03-Oct-2020

Nombre del Proyecto: DISEÑO DE PAVIMENTO RIGIDO.

Descripción: RETEN- EMPALME DEL HOSPITAL

Periodo de Diseño: 50 años

Espesor de Losa: 200.00 mm

Módulo de rotura (MR): 3.80 Mpa

Espesor de Sub base: 150.0 mm

Base tratada con Cemento: SI

CBR de sub rasante: SI

Módulo de reacción (K): 4.13 Mpa/m

Factor de seguridad: 1.20

Unión con Dovelas: Si

Pavimento con Bermas: Si

6.8.1 EJES SIMPLES

Análisis de fatiga			Análisis de erosión			
Carga	Multiplicado	Expectativa	Repeticiones	porcentaje		
por	por F.S	de	admisibles	de fatiga	Repeticiones	porcentaje
eje		repeticiones			admisibles	de erosión
KN						
13	16	2816	Inf	0.00	Inf	0.00
18	22	1791	Inf	0.00	Inf	0.00
27	32	527	Inf	0.00	Inf	0.00
36	43	23	Inf	0.00	Inf	0.00
40	48	78	Inf	0.00	Inf	0.00

6.8.2 EJES TÁNDEM

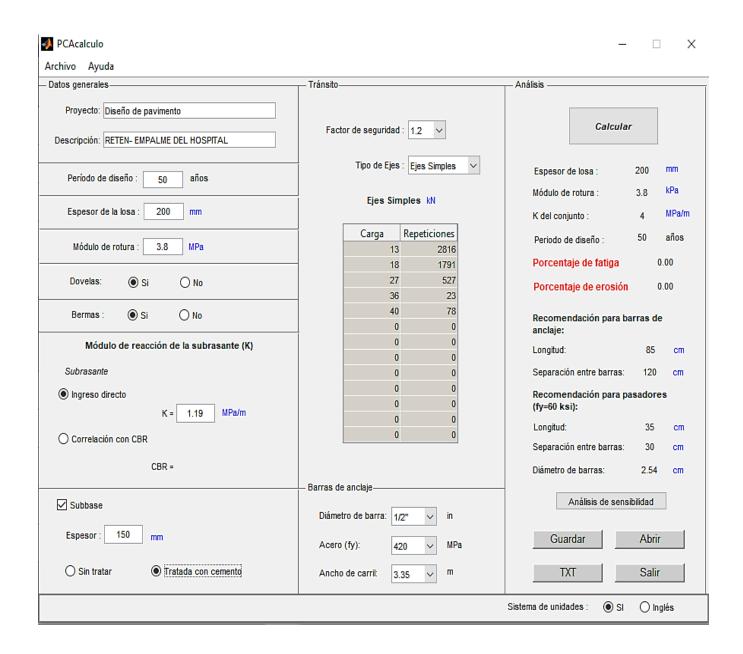
Análisis de fatiga			Análisis de erosión			
Carga	Multiplicado	Expectativa	Repeticiones	porcentaje		
por	por F.S	de	admisibles	de fatiga	Repeticiones	porcentaje
eje		repeticiones			admisibles	de erosión
KN						
13	16	1816	Inf	0.00	Inf	0.00
18	22	1791	Inf	0.00	Inf	0.00
27	32	527	Inf	0.00	Inf	0.00
36	43	23	Inf	0.00	Inf	0.00
40	48	78	Inf	0.00	Inf	0.00

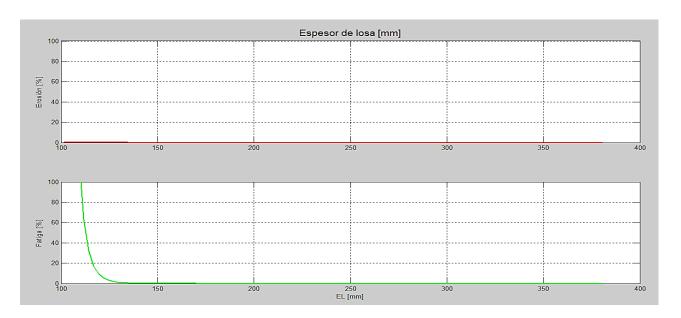
Recomendación para barras de anclaje:

Longitud de barras: 85.0 cm

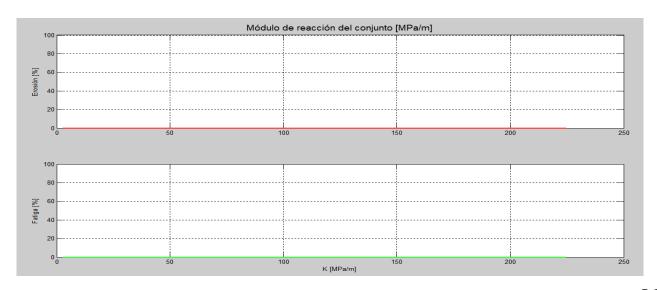
Separación entre centros: 120.0 cm

Recomendación para pasadores:


Longitud de barras: 35.0 cm


Separación entre centros: 30.0 cm

Diámetro de la barra: 2.5 cm


porcentaje total de fatiga: 0.

porcentaje total de erosión: 0.00

6.9 PCA Cálculo

DISEÑO PARA PAVIMENTO RÍGIDO METODOLOGÍA PCA-84

Fecha 03-Oct-2020

Nombre del Proyecto: DISEÑO DE PAVIMENTO RIGIDO

Descripción: EMPALME- ENTRADA DEL HOSPITAL

Periodo de Diseño: 50 años

Espesor de Losa: 200.00 mm

Módulo de rotura (MR): 3.80 Mpa

Espesor de Sub base: 150.0 mm

Base tratada con Cemento: Si

CBR de sub rasante: SI

Módulo de reacción (K): 20.24 Mpa/m

Factor de seguridad: 1.20

Unión con Dovelas: Si

Pavimento con Bermas: Si

6.9.1 EJES SIMPLES

Análisis de fatiga			Análisis de erosión			
Carga	Multiplicado	Expectativa	Repeticiones	porcentaje		
por	por F.S	de	admisibles	de fatiga	Repeticiones	porcentaje
eje		repeticiones			admisibles	de erosión
KN						
13	16	2816	Inf	0.00	Inf	0.00
18	22	1791	Inf	0.00	Inf	0.00
27	32	527	Inf	0.00	Inf	0.00
36	43	23	Inf	0.00	Inf	0.00
40	48	78	Inf	0.00	Inf	0.00

6.9.2 TÁNDEM

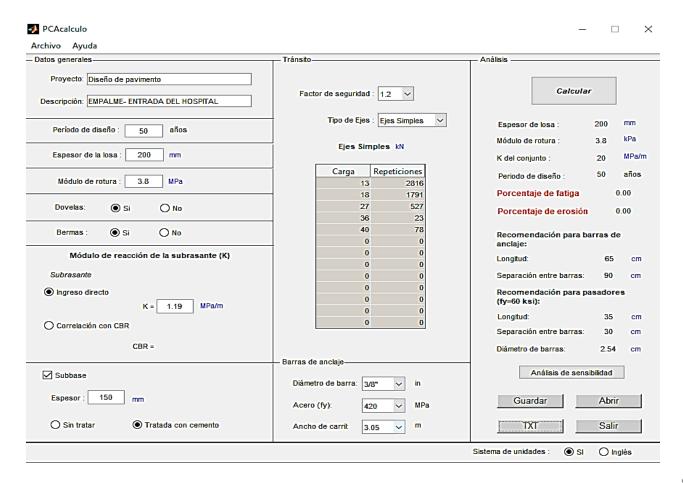
Análisis de fatiga			Análisis de erosión			
Carga	Multiplicado	Expectativa	Repeticiones	porcentaje		
por	por F.S	de	admisibles	de fatiga	Repeticiones	porcentaje
eje		repeticiones			admisibles	de erosión
KN						
13	16	1816	Inf	0.00	Inf	0.00
18	22	1791	Inf	0.00	Inf	0.00
27	32	527	Inf	0.00	Inf	0.00
36	43	23	Inf	0.00	Inf	0.00
40	48	78	Inf	0.00	Inf	0.00

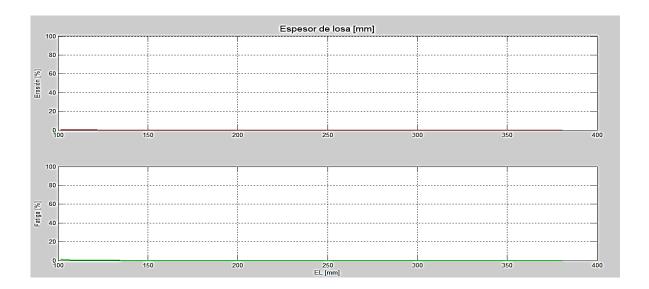
Recomendación para barras de anclaje:

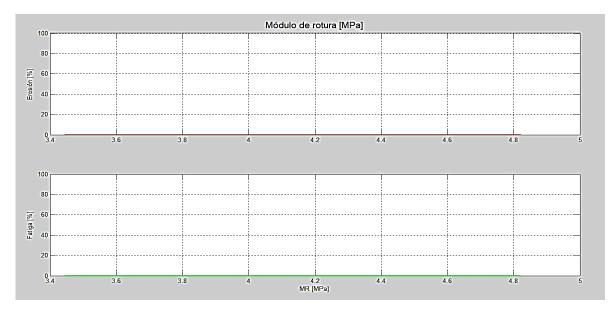
Longitud de barras: 65.0 cm

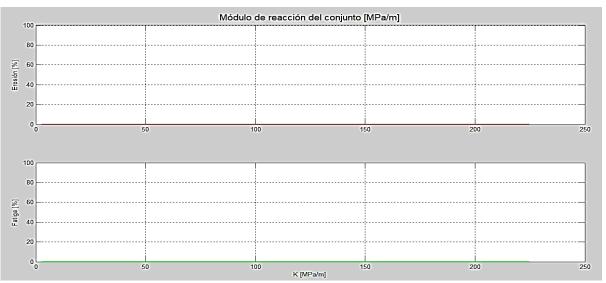
Separación entre centros: 90.0 cm

Recomendación para pasadores:


Longitud de barras: 35.0 cm


Separación entre centros: 30.0 cm


Diámetro de la barra: 2.5 cm


porcentaje total de fatiga: 0.00

porcentaje total de erosión: 0.00

VII. Estudio de Aspecto Organizativo y Legales

Estos estudios indican claramente la planificación, programación de la ejecución del proyecto y la organización idónea que responda al marco legal existente para llevar a cabo el proyecto y se aplica durante su ejecución y operación.

7.1 Aspectos legales

El objetivo es lograr que el proyecto se adecue a las normas legales vigentes, así como identificar las características del marco legal relacionado con la implementación del proyecto. Es necesario revisar, analizar y evaluar la legislación existente relacionada con el proyecto (leyes, decretos, reglamentos, códigos, normas, entre otras), requisitos legales (patentes, salud pública, laborales, municipales, ambientales, entre otros aspectos) que se consideren pertinentes para el proyecto.

Este análisis se realiza para evitar futuros problemas legales que impidan cumplir con la realización de las actividades.

Alguna normativa relacionada con aspectos técnicos del proyecto que se deben considerar es:

- Manual de Especificaciones Generales para la Construcción de Carreteras, Caminos y Puentes (CR2010).
- Normas para la Colocación de Dispositivos de Seguridad para Protección de Obras.
- Manual Centroamericano de Dispositivos Uniformes para el Control del Tránsito (SIECA).
- Manual Centroamericano de Normas para el Diseño Geométrico de las Carreteras (SIECA).

7.2 Organización y estructura administrativa

Se refiere a la estructura organizativa y administrativa que se requiere implementar para llevar a cabo el proyecto y el grado de responsabilidad y autoridad sobre el mismo, estableciendo un resumen de lo que implica la ejecución administrativa del proyecto, diseñar la estructura organizativa básica y ubicar la responsabilidad gerencial.

La etapa de ejecución del proyecto comprende las actividades relativas a la construcción de obras físicas y a las labores previas, incluyendo cómo se distribuyen las responsabilidades o divisiones de la entidad, describiendo cada una de las funciones y aportando el organigrama, si la construcción la lleva a cabo la administración.

Cuando se procede a iniciar una obra vial por contrato, la Administración debe ejercer fiscalización sobre la misma para lo que es posible designar una Unidad Ejecutora (UE). La UE tiene como objetivo administrar el contrato y supervisar el proyecto que se ejecuta, para que llegue a su fin exitosamente. Obra, para lo que debe llevar a cabo todo tipo de acciones entre las que están la fiscalización y verificación.

La responsabilidad de la UE es que se dé el cumplimiento de todos los términos contractuales del proyecto que se ejecuta, donde se incluyen los procedimientos, disposiciones, normas y especificaciones técnicas y administrativas.

El profesional o profesionales a cargo de la UE asumen las funciones y responsabilidades que se asignan al Ingeniero de Proyecto en las normas y especificaciones que regulan la ejecución de obras viales por contrato.

Cuando la UE se constituye con consultores contratados por la Administración, esta debe designar un Coordinador de su personal de planta, para que se establezca una comunicación entre la UE y la Administración. Además, al Coordinador se le asigna la responsabilidad de administrar el contrato o contratos existentes para conformar la UE.

Las UE dependen del tamaño y tipo de proyecto que tengan a cargo. Las UE que supervisan proyectos de conservación vial tendrán algunas características diferentes a las que supervisen proyectos de reconstrucción o construcción nueva. En esta sección se debe describir el organigrama de la UE y la forma en que se relaciona con la Administración.

En la etapa de operación del proyecto se debe hacer un detalle de los diferentes departamentos de la entidad que administrará el proyecto en esta fase, indicando si se efectuará una implementación progresiva de la organización o se comenzará con la que será definitiva en sus lineamientos generales. Es útil presentar un organigrama para tener una visión completa de toda la organización.

7.3 Planificación y programación de la ejecución del proyecto

El proceso de planificación y programación de la ejecución del proyecto consiste en definir las actividades que requieren cada uno de los componentes del proyecto de acuerdo con los objetivos. Se prepara un listado de las actividades requeridas para ejecutar el proyecto y se define la secuencia de actividades para luego proceder a asignarles los recursos humanos y el tiempo de ejecución. Se debe presentar un cronograma con el desglose de todas las actividades del proyecto.

Esto facilita el proceso de planificación de los recursos requeridos por el proyecto en el corto plazo, para su incorporación en los Planes Operativos Institucionales.

7.4 Identificación de Riesgos

Para la primera actividad del proceso de valoración de riesgo, se procederá a realizar una identificación amplia de los procesos y los procedimientos de las diferentes etapas del ciclo de vida del proyecto de infraestructura vial.

Se debe preguntar qué podría perturbar el logro del proyecto según los procesos y procedimientos identificados (portafolio de riesgos del proyecto), para luego identificar el por qué se originarían eventualmente dichas situaciones.

Por tanto, para realizar una correcta identificación de los riesgos de los procesos y procedimientos, se requiere establecer los eventos, causas y consecuencias, en caso de no presentarse alguno de estos factores no se puede considerar lo determinado como un riesgo, cabe destacar la importancia de no subestimar ningún tipo de riesgo.

Se debe incluir en la Identificación de Riesgos una serie de aspectos que se detallan a continuación.

- Responsable del Proyecto: responsable de la ejecución del proyecto.
- Nombre del Proyecto: nombre con el que es identificado el proyecto.
- Objetivo: el objetivo del proyecto.
- Número: número del evento identificado
- Evento: detalle de aquellos incidentes y situaciones que podrían ocurrir en un lugar específico en un intervalo de tiempo particular. Aquellos eventos que tienen un impacto negativo para el cumplimiento de los plazos y objetivos del proyecto, representan un riesgo. Los eventos deberán redactarse a futuro, utilizando frases como: "podría ser", "eventualmente", "posiblemente", entre otros.
- > Causas: posibles causas internas y externas de los eventos identificados.
- Consecuencias: efectos generados por la ocurrencia de un evento, podrían ser tanto positivas (oportunidades) o negativas (riesgos).

7.5 Análisis de Riesgos

El nivel de riesgo es clave para analizar los riesgos identificados. Este nivel se encuentra asociado a la probabilidad y magnitud de la consecuencia con la que eventualmente se presentarían tales riesgos.

El análisis de la consecuencia de los eventos identificados, deberá considerar los posibles efectos negativos y positivos de dichos eventos.

Se distinguen dos tipos de nivel de riesgo: el inherente, es aquel propio o característico del proceso o actividad del proyecto que se realiza y, el residual es aquel nivel de riesgo remanente una vez aplicadas las medidas de administración de riesgo existentes. Por lo anterior, se considera que las actividades de control son efectivas, si se refleja una disminución del riesgo residual en relación al inherente.

El Análisis de Riesgos está compuesto por una serie aspectos divididos en dos escenarios: sin considerar las medidas de administración de riesgos existentes y tomando en cuenta su implementación, dichas columnas se detallan a continuación.

Sin considerar medidas de administración actuales

- Probabilidad: medida o descripción de la posibilidad de la ocurrencia de un evento, considerando las causas internas o externas que podrían originar el evento y que se contempla en la actividad de identificación de riesgo, sin tomar en cuenta las medidas de administración existentes
- > Parámetros de probabilidad: remoto, inusual, ocasional, probable, constante.
- Magnitud: medida cuantitativa o cualitativa de la consecuencia de un riesgo, sin tomar en cuenta las medidas de administración existentes.
- Parámetros de magnitud: insignificante, menor, moderado, mayor, catastrófico.
- Riesgo inherente: aquel nivel de riesgo existente, sin considerar las medidas de administración que se encuentren en operación. Se obtiene de multiplicar la probabilidad por la magnitud o impacto.

Considerando medidas de administración actuales

- Actividades de administración actuales: descripción de las actividades o controles que la administración activa desarrolla para disminuir el nivel de riesgo.
- Aptitud: utilidad de la medida de administración existente.
- Parámetros de aptitud: Si, No.

- Actitud: disposición del personal encargado de ejecutar las medidas existentes para aplicarlas.
- > Parámetros de actitud: Si, No
- Probabilidad: Medida o descripción de la posibilidad de ocurrencia de un evento, considerando las medidas para la administración de riesgo existentes.
- Magnitud: medida cuantitativa o cualitativa de la consecuencia de un riesgo, considerando las medidas para la administración de riesgo existentes.
- > Parámetros de magnitud: insignificante, menor, moderado, mayor, catastrófico.
- Riesgo residual: riesgo remanente después de la acción realizada por la administración, para alterar su probabilidad o impacto.

7.6 Evaluación de riesgos

Partiendo del hecho de que los recursos públicos son limitados, y de que muchos de los proyectos son financiados mediante empréstito, lo cual tiene un costo financiero significativo, la administración activa debe asegurar el éxito de los mismos, por lo que es necesario un buen control de todos aquellos eventos que pongan en riesgo el proyecto.

La evaluación considera el grado de eficiencia y eficacia de las medidas ejecutadas para la administración de los riesgos, así como el efecto que generan estas medidas sobre el nivel de riesgo, al contribuir en la disminución de la probabilidad, magnitud o ambas.

La evaluación también contempla los recursos disponibles para administrar riesgos, la vinculación con la gestión, grado en que se podría afectar la causa de los riesgos, los costos; así como el análisis del costo beneficio y el nivel de riesgo residual, nivel de aplicación y el resultado de la evaluación.

7.7 Administración

Una vez efectuada la evaluación de riesgos, deberán ser administrados todos los riesgos. Con lo anterior, se pretende seleccionar entre diferentes opciones posibles de tratamiento de los riesgos, aquella que pueda generar un

efecto sobre la probabilidad y/o el impacto de un evento, y de esta forma, minimizar los riesgos para el proyecto.

Para la administración de los riesgos se debe tomar en consideración criterios tales como:

- Cambio en el nivel de riesgo con la medida: es al análisis que se realiza para determinar si con la puesta en marcha de la medida que se está proponiendo se da o no un cambio en el nivel de riesgo con respecto al nivel de riesgo residual obtenido en la matriz de análisis.
- Costo de la medida: se refiere al costo de ejecutar la medida de administración de riesgos propuesta, el cual debe detallar los costos que conlleva la implementación de las actividades relacionada con el SEVRI.
- Análisis costo/beneficio: aquí se determina si los costos de ejecutar las medidas de administración de riesgo propuestas superan los beneficios obtenidos al ejecutar dicha medida, o sucede lo contrario.
- Capacidad e idoneidad de los actores: es la habilidad y disposición de los responsables de ejecutar las medidas de administración de riesgos propuestas.
- Cumplimiento de interés público, y resguardo de la hacienda pública: considerar si la medida existente responde a las necesidades de los sujetos interesados que van a recibir el servicio, y el resguardo económico, debido a que los recursos son limitados para atender una demanda en constante crecimiento.
- Viabilidad jurídica, técnica y operacional de las opciones: considerar si la medida existente cumple con el principio de legalidad, con los criterios técnicos y operativos correspondientes.

Medidas seleccionadas: son las medidas que obtienen un resultado aceptable luego de aplicar los criterios anteriores.

VIII. Estudio financiero y económico

Este proyecto pude ser ejecutado por varias instituciones, como la alcaldía, gobierno Regional, Ministerio de Transporte infra e estructura.

Es importante mencionar que el proyecto es de una gran inversión por lo que pertenece al sector público, por lo cual no existe un retorno de capital invertido, es un beneficio social sin costo alguno lo que facilitara un acceso confortable al nuevo hospital Regional.

PROYECTO: DISEÑO DE PAVIMENTO RIGIDO DEL TRAMO SUBURBANO "EL RETEN - ENTRADA PRINCIPAL HOSPITAL REGIONAL BILWI"

UBICACIÓN: "EL RETEN -ENTRADA PRINCIPAL HOSPITAL REGIONAL BILWI"

DURACION DE LA OBRA: 120 Días CALENDARIO

MONTO SIN IMPUESTO: C\$ 41,220,797.43

MONTO CON IMPUESTO: C\$ 64,800,412.63

ETAPA	DESCRIPCION	UM	CANTIDAD	PRECIO	1	TOTAL (C\$)
	ADMINISTRACION		1 1		C\$	657,142.86
109(09)	Tiempo Ocioso del Equipo de Construcción	Glb.	1	C\$410,714.29	C\$	410,714.29
110(6)	Trabajos Por Administración	Glb.	1	C\$246,428.57	C\$	246,428.57
	MOVIMIENTO DE TIERRA				C	\$1,982,765.93
203(2)	Subexcavación	m³	134	C\$1,500.00	C\$	201,000.00
203(5)	prestamo selecto, caso 2	m³	3987.5	C\$211.86	C\$	844,791.75
203(9)	Construccion de Terraplenes	m³	3918.5	C\$52.30	C\$	204,937.55
203(9A)	Construccion de Cuña Con Equipos Manuales	m³	1935	C\$340.15	C\$	658,190.25
206(2)	Sobre acarreo Largo	m³ - Km	8214.28	C\$8.99	C\$	73,846.38
	ESTRUCTURA DE PAVIMENTO					C\$38,221,822.38
304(2A)	Capa de Agregado Triturado Tratado Con Cemento Grad	m³	3987.5	C\$1,719.41	C\$	6,856,147.38
501(1A)	Pavimento de Concreto Hidráulico MR = 45kg/cm²	m³	2392.5	C\$13,110.00	C\$	31,365,675.00
	SEÑALIZACION				C	\$339,351.99
802(1)	Marcas de Pavimento, Tipo Línea Contínua Amarilla	ml	460	C\$150.00	C\$	69,000.00
802(1A)	Marcas de Pavimento, Tipo Línea Contínua Blanca	ml	1150	C\$150.00	C\$	172,500.00
802(2A)	Marcas de Pavimento, Tipo Simbología y Letras	m²	239.2	C\$377.12	C\$	90,207.10
802(5)	Marcas de Pavimento Resaltadas (Vialetas)	c/u	55.2	C\$84.32	C\$	4,654.46
914 (6)	Postes de Kilometraje	c/u	2	C\$1,495.21	C\$	2,990.42
	TRABAJOS AMBIENTALES Y SOCIALES				C\$	19,714.29
S/C	Taller de Higiene y Seguridad Ocupacional	Glb.	1	C\$6,571.43	C\$	6,571.43
S/C	Taller de Educación Vial - Ambiental	Glb.	1	C\$13,142.86	C\$	13,142.86
	TOTAL CONTRACTUAL (C\$)					41,220,797.43
	COSTOS TOTAL DIRECTOS C\$					41,220,797.43
	COSTOS TOTAL INDIRECTOS		% sobre a	10.00%		4,122,079.74
	ADMINISTRACION		(a+b)	10.00%		4,534,287.72
	UTILIDADES		(a+b+c)	12.00%		5,985,259.79
	SUB TOTAL C\$		(a+b+c+d)			55,862,424.68
	IMPUESTOS					. ,
	IVA		(15% sobre e)	15.00%		8,379,363.70
	MUNICIPAL		(1% sobre e)	1.00%		558,624.25
	TOTAL PRECIO DE OFERTA C\$		e+f+g			64,800,412.63
	TOTAL CONTRACTUAL + ORDE	N DE CAMBI	-			64,800,412.63

CONCEPTO	%	VALOR
a. TOTAL DE COSTOS DIRECTOS		41,220,797.43
b. TOTAL DE COSTOS INDIRECTOS (% sobre a)	10	4,122,079.74
c. ADMINISTRACION (% sobre a+b)	10	1,313,995.89
d. UTILIDADES (% sobre a+b+c)	12	1,857,114.19
e. SUB TOTAL (a+b+c+d)		55,862,424.68
IMPUESTOS		
f. I.V.A (15% sobre e.)	15	8,379,363.70
g. IMPUESTO MUNICIPALES (1% sobre e)	1	558,624.25
PRECIO TOTAL DE LA OFERTA (e+f+g)		64,800,412.63

SON: Sesenta y Cuatro Millones, Ochocientos Mil, Cuatrocientos Doce Cordobas Con Sesenta y Tres Centavos

8.1 PRESUPUESTO GENERAL RESUMEN POR ETAPAS

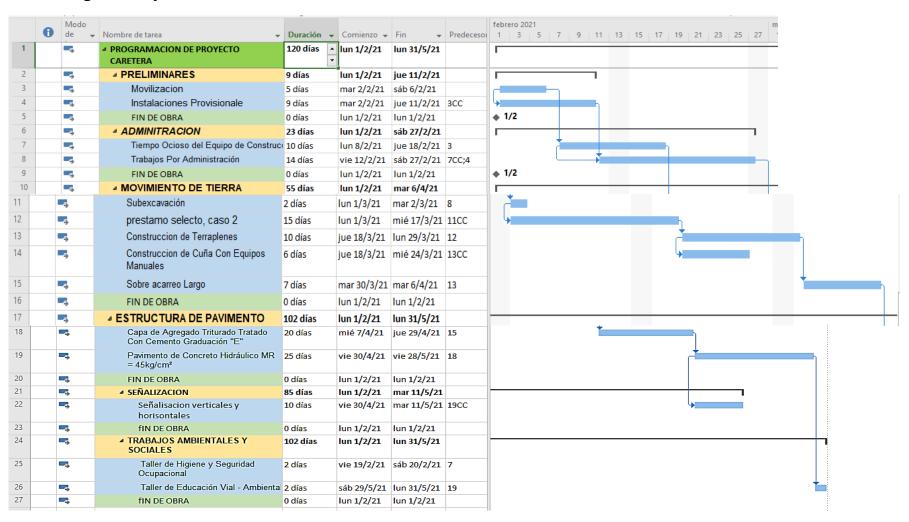
ETAPA	DESCRIPCION		MATERIALES	MA	NO DE OBRA	TRA	ANS Y EQUIPO	SUB- CONTRATO	СО	STO TOTAL C\$
	TRABAJOS ADMINISTRATIVOS	C\$	328,571.43	C\$	164,285.71	C\$	164,285.71		C\$	657,142.86
	MOVIMIENTO DE TIERRA	C\$	991,382.96	C\$	495,691.48	C\$	495,691.48		C\$	1,982,765.93
	ESTRUCTURA DE PAVIMENTO	C\$	19,110,911.19	C\$	9,555,455.59	C\$	9,555,455.59		C\$	38,221,822.38
	SEÑALIZACION	C\$	169,675.99	C\$	84,838.00	C\$	84,838.00		C\$	339,351.99
	TRABAJOS AMBIENTALES Y SOCIALES	C\$	9,857.14	C\$	4,928.57	C\$	4,928.57		C\$	19,714.29
a. TOTAL C	OSTO DIRECTO C\$								C\$	41,220,797.43
b. TOTAL D	E COSTOS INDIRECTOS (% sobre a)							10	C\$	4,122,079.74
c. ADMINIS	TRACION (% sobre a+b)							10	C\$	4,534,287.72
d. UTILIDAD	DES (% sobre a+b+c)							12	C\$	5,985,259.79
e. SUB TOT	AL (a+b+c+d)								C\$	55,862,424.68
IMPUESTO	S									
f. I.V.A (15%	sobre e.)							15	C\$	8,379,363.70
g. IMPUEST	O MUNICIPALES (1% sobre e)							1	C\$	558,624.25
PRECIO TO	TAL DE LA OFERTA (e+f+g)								C\$	64,800,412.63
SON: Seser	nta y Cuatro Millones, Ochocientos Mil, Cuatroci	entos D	oce Cordobas Cor	1 Sese	nta v Tres Centa	vos				

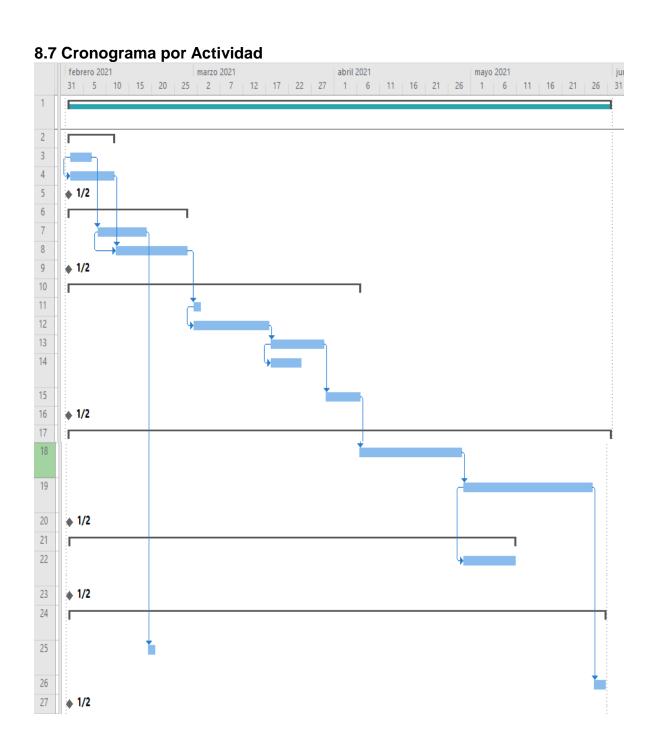
8.2 Presupuesto.

							COSTO U	NITA	RIO C\$						COSTO	TOT	AL C\$		
ETAPA	DESCRIPCION	U/M	CANT.	MAT	ERIALES		MANO DE OBRA		RANSP. Y Equipo		TOTAL	N	MATERIALES	MA	NO DE OBRA	,	TRANSP. Y EQUIPO		TOTAL
												C\$	1,749,025.82	C\$	874,512.91	C\$	874,512.91	C\$	3,498,051.64
	TRABAJOS ADMINISTRATIVOS											C\$	328,571.43	C\$	164,285.71	C\$	164,285.71	C\$	657,142.86
109(09)	Tiempo Ocioso del Equipo de Construcción	Glb.	1	C\$	205,357.14	C\$	102,678.57	C\$	102,678.57	C\$	410,714.29	C\$	205,357.14	C\$	102,678.57	C\$	102,678.57	C\$	410,714.29
110(6)	Trabajos Por Administración	Glb.	1	C\$	123,214.29	C\$	61,607.14	C\$	61,607.14	C\$	246,428.57	C\$	123,214.29	C\$	61,607.14	C\$	61,607.14	C\$	246,428.57
	MOVIMIENTO DE TIERRA											C\$	991,382.96	C\$	495,691.48	C\$	495,691.48	C\$	1,982,765.93
203(2)	Subexcavación	m³	134	C\$	750.00	C\$	375.00	C\$	375.00	C\$	1,500.00	C\$	100,500.00	C\$	50,250.00	C\$	50,250.00	C\$	201,000.00
203(5)	prestamo selecto, caso 2	m³	3987.5	C\$	105.93	C\$	52.97	C\$	52.97	C\$	211.86	C\$	422,395.88	C\$	211,197.94	C\$	211,197.94	C\$	844,791.75
203(9)	Construccion de Terraplenes	m³	3918.5	C\$	26.15	C\$	13.08	C\$	13.08	C\$	52.30	C\$	102,468.78	C\$	51,234.39	C\$	51,234.39	C\$	204,937.55
203(9A)	Construccion de Cuña Con Equipos Manuales	m³	1935	C\$	170.08	C\$	85.04	C\$	85.04	C\$	340.15	C\$	329,095.13	C\$	164,547.56	C\$	164,547.56	C\$	658,190.25
206(2)	Sobre acarreo Largo	m³ - Km	8214.28	C\$	4.50	C\$	2.25	C\$	2.25	C\$	8.99	C\$	36,923.19	C\$	18,461.59	C\$	18,461.59	C\$	73,846.38
	ESTRUCTURA DE PAVIMENTO											C\$	19,110,911.19	C\$	9,555,455.59	C\$	9,555,455.59	C\$	38,221,822.38
304(2A)	Capa de Agregado Triturado Tratado Con Cemento Graduación "E"	m³	3987.5	C\$	859.71	C\$	429.85	C\$	429.85	C\$	1,719.41	C\$	3,428,073.69	C\$	1,714,036.84	C\$	1,714,036.84	C\$	6,856,147.38
501(1A)	Pavimento de Concreto Hidráulico MR = 45kg/cm²	m³	2392.5	C\$	6,555.00	C\$	3,277.50	C\$	3,277.50	C\$	13,110.00	C\$	15,682,837.50	C\$	7,841,418.75	C\$	7,841,418.75	C\$	31,365,675.00
	SEÑALIZACION											C\$	169,675.99	C\$	84,838.00	C\$	84,838.00	C\$	339,351.99
802(1)	Marcas de Pavimento, Tipo Línea Contínua Amarilla	ml	460	C\$	75.00	C\$	37.50	C\$	37.50	C\$	150.00	C\$	34,500.00	C\$	17,250.00	C\$	17,250.00	C\$	69,000.00
802(1A)	Marcas de Pavimento, Tipo Línea Contínua Blanca	ml	1150	C\$	75.00	C\$	37.50	C\$	37.50	C\$	150.00	C\$	86,250.00	C\$	43,125.00	C\$	43,125.00	C\$	172,500.00
802(2A)	Marcas de Pavimento, Tipo Simbología y Letras	m²	239.2	C\$	188.56	C\$	94.28	C\$	94.28	C\$	377.12	C\$	45,103.55	C\$	22,551.78	C\$	22,551.78	C\$	90,207.10
802(5)	Marcas de Pavimento Resaltadas (Vialetas)	c/u	55.2	C\$	42.16	C\$	21.08	C\$	21.08	C\$	84.32	C\$	2,327.23	C\$	1,163.62	C\$	1,163.62	C\$	4,654.46
914 (6)	Postes de Kilometraje	c/u	2	C\$	747.61	C\$	373.80	C\$	373.80	C\$	1,495.21	C\$	1,495.21	C\$	747.61	C\$	747.61	C\$	2,990.42
	TRABAJOS AMBIENTALES Y SOCIALES											C\$	9,857.14	C\$	4,928.57	C\$	4,928.57	C\$	19,714.29
S/C	Taller de Higiene y Seguridad Ocupacional	Glb.	1	C\$	3,285.71	C\$	1,642.86	C\$	1,642.86	C\$	6,571.43	C\$	3,285.71	C\$	1,642.86	C\$	1,642.86	C\$	6,571.43
S/C	Taller de Educación Vial - Ambiental	Glb.	1	C\$	6,571.43	C\$	3,285.71	C\$	3,285.71	C\$	13,142.86	C\$	6,571.43	C\$	3,285.71	C\$	3,285.71	C\$	13,142.86
												C\$	20,610,398.72	C\$	10,305,199.36	C\$	10,305,199.36	C\$	41,220,797.43

8.3 CRONOGRAMA DE ACTIVIDAD

1	*	△ PROGRAMACION DE PROYECTO CARETERA	120 días	lun 1/2/21	lun 31/5/21			MES 1				MES 2			ME	S 3			ME	S 4	
2	-5	△ PRELIMINARES	9 días	lun 1/2/21	jue 11/2/21																
3	-5	Movilizacion	5 días	mar 2/2/21	sáb 6/2/21	SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4	SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4	SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4	SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4
4		Instalaciones Provisionale	9 días	mar 2/2/21	jue 11/2/21																
5		FIN DE OBRA	0 días	lun 1/2/21	lun 1/2/21	1															
6	-5	△ ADMINITRACION	23 días	lun 1/2/21	sáb 27/2/21	0.5	0.5														
7	-5	Tiempo Ocioso del Equipo de Construc	10 días	lun 8/2/21	jue 18/2/21																
8	-5	Trabajos Por Administración	14 días	vie 12/2/21	sáb 27/2/21																
9	-5	FIN DE OBRA	0 días	lun 1/2/21	lun 1/2/21		134.00														
10	-5		55 días	lun 1/2/21	mar 6/4/21		1329.1667	1329,1667	1329.1667												
11		Subexcavación	2 días	lun 1/3/21	mar 2/3/21		1959.25														
12	-3	prestamo selecto, caso 2	15 días	lun 1/3/21	mié 17/3/21																-
13	->	Construccion de Terraplenes	10 días	jue 18/3/21	lun 29/3/21		967.5	967.5													
14	=3	Construccion de Cuña Con Equipos Manuales	6 días	jue 18/3/21	mié 24/3/21		8214.28														<u> </u>
15		Sobre acarreo Largo	7 días	mar 30/3/21	mar 6/4/21																
16	-5	FIN DE OBRA	0 días	lun 1/2/21	lun 1/2/21									1329,1667	1329.1667	1329,1667					
17			102 días	lun 1/2/21	lun 31/5/21												598.125	598.125	598.125	598.125	
18	-5	Capa de Agregado Triturado Tratado Con Cemento Graduación "E"	20 días	mié 7/4/21	jue 29/4/21												J30.12J	JJ0.12J	330.123	J30.12J	
19	=	Pavimento de Concreto Hidráulico MR = 45kg/cm²	25 días	vie 30/4/21	vie 28/5/21	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	
20	-5	FIN DE OBRA	0 días	lun 1/2/21	lun 1/2/21	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	
21	=3		85 días	lun 1/2/21	mar 11/5/21	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	
22	-5	Señalisacion verticales y horisontales	10 días	vie 30/4/21	mar 11/5/21	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	
23	-5	fIN DE OBRA	0 días	lun 1/2/21	lun 1/2/21	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0,13	0.13	0.13	0.13	0.13	0.13	0.13	
24	-5	△ TRABAJOS AMBIENTALES Y SOCIALES	102 días	lun 1/2/21	lun 31/5/21	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
25		Taller de Higiene y Seguridad Ocupacional	2 días	vie 19/2/21	sáb 20/2/21					_	_							1			
26	=,	Taller de Educación Vial - Ambiental	2 días	sáb 29/5/21	lun 31/5/21																1
27	=,	fIN DE OBRA	0 días	lun 1/2/21									_								


8.4 CRONOGRAMA FISICO


		MES 1				MES 2			ME	S 3			ME	S 4	
SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4	SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4	SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4	SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4
1															
0.5	0.5														
	134.00														
	1329.1667	1329.1667	1329.1667												
	1959.25														
	967.5														
	8214.28														
								1329.1667	1329.1667	1329.1667					
											598.125	598.125	598.125	598.125	
30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	30.67	
76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	76.67	
15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	15.95	
3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	
0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	
												1			
															1

8.5 CRONOOGRAMA FINANCIERO

			MES	1							MES 2								ME	S 3							MES 4		
S	EMANA 1	SE	MANA 2	3	SEMANA 3	8	SEMANA 4	SI	EMANA 1	S	EMANA 2	,	SEMANA 3	,	SEMANA 4		SEMANA 1		SEMANA 2		SEMANA 3	8	EMANA 4	;	SEMANA 1	8	EMANA 2	SEMANA 3	SEMANA 4
C\$	410,714.29																												
C\$	123,214.29	C\$	123,214.29																										
		C\$	7,950.22																										
			281,597.25		281,597.25		281,597.25																						
			102,468.78	_	102,468.78																								
			329,095.13		329,095.13																								
		C\$	73,846.38																										
														24		24		24											
														C\$	2,285,382.46	C\$	2,285,382.46	C\$	2,285,382.46	-00	70444075	20	7011 110 75	20	7044 440 75	00.	7044 440 77		
																				C\$	7,841,418.75	C\$	/,841,418./5	C\$	7,841,418.75	C\$	/,841,418./5		
Ort.	F40.40	00	F40.40	ΔΦ.	E40.40	Δ¢	F40.40	ΔΦ.	F40.40	Λħ	F40.40	00	540.40	Δ¢	F40.40	O#	F40.40	Or .	F40.40	Δ Φ	540.40	00	F40.40	Δħ	F40.40	Δê	F40.40	00 540 40	
C\$	519.49		519.49		519.49		519.49		519.49		519.49		519.49		519.49				519.49				519.49		519.49			C\$ 519.49	
C\$	1,258.87 6,013.81	_	1,258.87	_	1,258.87 6,013.81	_	1,258.87		1,258.87	_	1,258.87 6,013.81		1,258.87	_	1,258.87 6,013.81	_	•		1,258.87				1,258.87	_	1,258.87 6,013.81	_		C\$ 1,258.87 C\$ 6,013.81	
C\$ C\$	310.30		6,013.81 310.30		310.30	_	6,013.81 310.30		6,013.81		310.30		6,013.81 310.30	_	310.30	_		_	6,013.81				6,013.81 310.30		310.30	_		C\$ 0,013.01 C\$ 310.30	
C\$	199.36		199.36	_	199.36	_	199.36		199.36		199.36		199.36		199.36			_	199.36			_	199.36		199.36	_	199.36		
Οψ	133.30	ΟΨ	133.30	Οψ	133.30	Οψ	133,30	Οψ	133.30	Οψ	133.30	ΟΨ	133.30	Οψ	133.30	Vψ	133.30	Οŷ	133.30	υψ	133.30	ΟΨ	133.30	Οψ	133.30	Οψ	133.30	00 133.30	
																								C\$	6,571.43				
																								ΟΨ	טווו זטן				C\$ 13,142.86
																													- 10,1 1Ε100

8.6 Cronograma dejecucion

IX. Estudio de impacto ambiental

Los proyectos de infraestructura carretera producen distintos efectos al medio ambiente, por lo cual son sometidos a un análisis de impacto ambiental, con el objeto de identificar y valorar los impactos potenciales que futuras obras este tipo generarán al ambiente. A este proceso se le denomina "evaluación de impacto ambiental, (EIA).

En este estudio se realizará actividades como movimiento de tierra, nivelación del terreno, por lo que afectará cambio físico del suelo natural, en todo caso no afectará la zona vegetal.

La vía de acceso actual del tramo se encuentra en el exterior de la ciudad. Conservar la vía de acceso actual para ser utilizada en el nuevo proyecto generaría impactos ambientales negativos en cuanto a; rápido deterioro y destrucción de la estructura de pavimentos existente, incremento del ruido, congestionamiento del tráfico, incremento del riesgo de accidentes vehiculares.

Con el propósito de prevenir esos impactos, el proyecto contempla la construcción de una vía alterna que, siguiendo una trayectoria de circunvalación, conecte la nueva zona portuaria, con la carretera Inter-Departamental Puerto Cabezas – Rosita que es el punto de partida para la conexión con la zona del Pacífico y Centro del país, hacia donde se dirigirá la mayor parte de actividad comercial.

En todo caso no habrá daño al medio ambiente por lo que la carretera ya es existe debido que sobre el sitio se habrá la construcción, y dicho lo mencionado anterior mente este impacto será significativo

Al comenzar la construcción del pavimento se comenzará producir, madera, bolsas de cementos, varilla de construcción entre otros.

Para el proceso de identificación y evaluación de los impactos ambientales, se ha seleccionado una Metodología basada en indicadores que ha permitido identificar, evaluar e interpretar las implicancias ambientales que se prevén ocurran durante las etapas de planificación, construcción, operación y abandono del Proyecto

Como resultado del análisis de los impactos ambientales, puede deducirse que, de la definición del proyecto y de la toma en consideración de las medidas preventivas y correctoras, la introducción de este proyecto no va a provocar ningún impacto crítico sobre el medio ambiente,

Perfectamente compatibles con los usos actuales y futuros, por el contrario, los impactos ambientales positivos son bastante significativos dado la amplia gama de beneficios que conlleva el mejorar la accesibilidad garantizando un sistema confiable y seguro.

		Ma	atriz Caus	a -Efecto de In	npacto Neg	ativo		
					a de Const			
Factores del Me	dio	Despale	Limpieza inicial	Movimiento de Tierra	Trasporte de	Excavacion	Obras de drenaje	Pavimentacion
Factor	COD	C1	C2	С3	C4	C5	C6	С7
CLIMA	M1							
CALIDAD DE AIRE	M2		✓	✓	✓	✓	✓	✓
RUIDOS Y VIBRACION	М3		✓	✓	✓	✓		✓
GEOLOGIA Y GEOMORFOLOGIA	M4					✓		
HIDROLOGIA SUPERFICILA Y SUPTERRANEA	M5			✓			✓	
SUELO	M6			✓		✓		
VEGETACION	M7	✓						
FAUNA	M8	✓						
PAISAJE	М9	✓						
RELACIONES ECOLOGICA	M10							
SISTEMA DE ASENTAMIENTO	M11							
TRANSPORTE Y VIABILIDAD	M12				√			
ACUEDUCTO	M13							
ALCANTARILLADO	M14						✓	
TRATAMIENTO DE SOLIDOS	M15							
HABITAD HUMANA	M16							
ESPACIOS PUBLICOS	M17							
PAISAJE URBANO	M18							
EQUIPAMIENTO DE SERVICIO	M19							
REGULACIONES URB. Y ARQ.	M20							
SALUD	M21							
CALIDAD DE VIDA	M22							
FACTORES SOCIOCULTURALES	M23							
VULNERABILIDAD	M24							
ECONOMIA	M25							
RELACIONES DEPENDENCIA	M26							
FUENTES ENERGETICAS	M27		√	AMDIENTE				

TABLA: RESULTADO DE ESTUDIO AMBIENTE

X. Lista de referencias

- 1. AASHTO, 1993. "Guía para el Diseño de Estructuras de Pavimentos".
- 2. American Concrete Pavement Association (acpa), "Boletín Técnico Pavement Rehabilitation Strategy Selection".
- 3. American Concrete Pavement Association (acpa), "Boletín Técnico Subgrades and Subbases for Concrete Pavements".
- 4. Asociación de Productores del Cemento del Perú (Asocem), "Guía para el reconocimiento de fallas en pavimentos rígidos".
- Asociación de Productores del Cemento del Perú (Asocem), "Boletín Técnico No 81- Tipos de Pavimento de Concreto".
- Reglamento de peso y dimensión vehicular para la circulación en la red vial nacional.
- 7. Manual Centroamericano de Normas Para Diseño Geométrico de Carreteras Regionales. Edición 2.
- 8. NIC 2019.
- Ministerio de Transporte e Infraestructura. Manual Para La Revisión De Costo y Presupuesto.
- 10. By Elena Cáceres Ruiz. Costo y Presupuesto de Carretera.
- Rafael Cal y Mayor James Cardenas. Ingeniería de tránsito Editorial
 Alfaomega.
- Carlos Kraemer. Editorial Mc Graw Hill. Ingeniería de Transito y Carretera. 2
 Tomo.
- 13. Garber-Hoel. Ingeniería de Transito y de carreteras.

XI. ANEXO Foto del laboratorio de suelo

Balanza: Es una herramienta que sirve para pesar materiales.

Tamices: Sirve para para determina la granulometría del suelo, se utilizan tamices que separan por tamaños distintas partículas que la componen.

Sondeo manual para pruebas de laboratorio

Excavación para determinar el comportamiento del suelo en la estación 0+300

Profundidad de la excavación en la estación 1+000 y 1+500

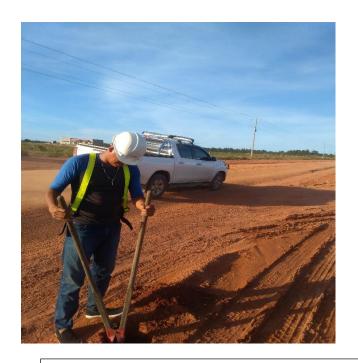


Foto de sondeo en el empalme del hospital Regional en la estación 1+800 y 2+000

Fotos de Aforo Vehicular del tramo

Foto de vehículos en el tramo de Reten- Empalme del hospital (camioneta Picko y C2)

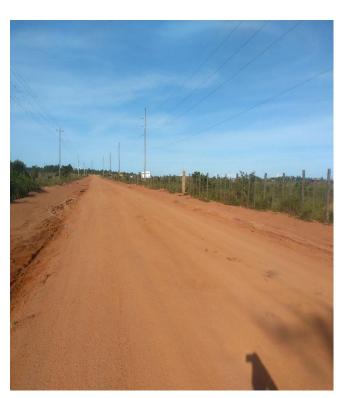
C2

JEEP

T2-S2

PICKO

Fotos del Estado de la calle actual



Estación total

IIFO	ESQUEMAS				MAALM			
DE VEHICULOS	DE VEHICULOS	1er. Eje	2do. Eje	3er. Eje	4to. Eje	Sto. Eje	6to. Eje	Peso Máximo Total (1) Ton - Met.
C2	4	4.50	9.00					13.50
C3	48	5.00	16	.00				21.00
	- 		8.00	8.00				
C4	-417	5.00		20.00				25.00
	6		6.67	6.66	6.66			
T2-S1		5.00	9.00	9.00				23.00
T2-S2	uad	5.00	9.00	16	.00			30.00
	-			8.00	8.00			
T2-S3	(2E) 0000	5.00	9.00		20.00		1	34.00
	0 000			6.67	6.66	6.66		
T3-S1	€	5.00	16	.00	9.00			30.00
	D. 00.00	_	8.00	8.00				
T3-S2		5.00	16	.00	16	.00]	37.00
	O 00 00		8.00	8.00	8.00	8.00		
T3-S3	6 50 500	5.00	16	.00		20.00		41.00
	0 00 000		8.00	8.00	6.67	6.66	6.66	
C2-R2	140	4.50	9.00	4.0 a	4.0 a			21.50
	0.00	4.50	9.00	6.5 b	6.5 b			26.50
C3-R2	48	5.00	16	.00	4.0 a	4.0 a		29.00
	0 00 0 0	5.00	8 00	8.00	6.5 b	6.5 6		34.00
C3-R3	r48	5.00	16	.00	4.0 a	5.0 a	5.0 a	35.00
	SO S 50	5.00	8.0 ъ	8.06	6.5 b	5.0 b	506	37.50

Tipo de vehículos pesados

11.1 Matriz de actividad

Objetivo	General	Objetivo Especifico	Fuentes de	Instrumentos y	Forma de Procesar la
			Información	Programas Usados para la Recopilación de Información	Información
		Realizar los estudios técnicos de ingeniería (Estudio Topográfico, Transito, Geotécnico e Hidrológico) para obtener un diseño adecuado.	Documentos, encuesta, visita al sitio de proyecto, investigación por navegador.	Estación total, Tabla y Cuaderno de Campo, Pico, Pala, Cinta Métrica, Mazo, Bandeja, Balanza, Tamiz, horno.	Finalizado los estudios técnicos, se presentará los resultados por medio de cuadros, gráficas y párrafos escrito describiendo los procesos de cada estudio.
de pavime	una de diseño ento rígido EL Reten- Principal Hospital	Diseñar la estructura de pavimento rígido	 ASHTO 88, T-89, T-93 NIC-2000 NIC-2019 	 Ordenador Programa OFFICE Calculadora AUTO – CAD CIVIL 3D PCA 	El diseño de la estructura del pavimento se presentará en página A-3, después de haberlo diseñado mediante los programas antes mencionado.
		Determinar el costo, presupuesto de las etapas y sub etapas del proyecto tramo EL Reten-Entrada Principal Nuevo Hospital Regional.	 Material de Apoyo, Curso Presupuesto de Carretera Manual para la Revisión de Costo y Presupuestos 	OrdenadorEXELPROJEC	El costo y presupuesto se calculara mediante los programas asignados y posteriormente ya finalizado se presentara en una página tamaño carta.

11.2 AVAL DEL TUTOR

El tutor: Ing. Guidian Vladimir Wilson Williams, por medio del presente escrito
otorga el Aval correspondiente para la presentación de:
a. Perfil

c. Informe Final

b. Protocolo

- d. Artículo Técnico
- e. Otra forma de culminación (especifique):

A la investigación titulada: <u>DISEÑO DE PAVIMENTO RIGIDO DEL TRAMO</u>
<u>SUBURBANO "EL RETEN – ENTRADA PRINCIPAL NUEVO HOSPITAL</u>
<u>REGIONAL BILWI"</u>, desarrollada por el o los estudiantes:

Br. Jorge Bernardo Gutiérrez Pasquier

Br. Donald Rene Vega Saballos

De la carrera: Ingeniería Civil

Nombre y apellido del Tutor: Guidian Vladimir Wilson Williams

Firma:	Stub .
Recinto: Bilwi	
Extensión:	
Fecha: 16 de d	octubre del 2020

11.3 AVAL DE LA SINDICA

AVAL CONSENTIMIENTO PREVIO, LIBRE E INFORMADO PARA INVESTIGAR Y PUBLICAR

El Territorio/Comunidad/Empresa/Barrio

Comunidad kambla del territorio twwi yahtra. del

municipio de <u>Puerto cabeza</u> por medio del presente escrito, otorga el consentimiento previo, libre e informado a URACCAN para que se realice la investigación titulada: <u>DISEÑO DE PAVIMENTO DE RIGIDO DEL TRAMO SUBURBANO "EL RETEN – ENTRADA PRINCIPAL NUEVO HOSPITAL REGIONAL BILWI"</u>, Con el objetivo de: <u>optar al título de ingeniero civil</u>, la cual se desarrollará del <u>06 de Enero</u> al <u>30 de junio</u>. Información que será utilizada única y exclusivamente con fines académicos. Las instancias correspondientes autorizan la publicación de los resultados de la investigación, previa validación de los resultados en la comunidad/organización.

resultados en la confundad/organización.	
Nombre y apellido del representante: Morela Antonio Salazar	
Cargo: Sindica	
Firma: Mustical Survey To	
Lugar: Com. Kamlo	
Fecha: 01-06-2020 - 510	